Is Parallel Programming Hard, And, If So,
What Can You Do About It?

Edited by:

Paul E. McKenney
Facebook
paulmck @kernel.org

September 25, 2022
Release v2022.09.25a

mailto:paulmck@kernel.org

Legal Statement

This work represents the views of the editor and the authors and does not
necessarily represent the view of their respective employers.

Trademarks:

* IBM, z Systems, and PowerPC are trademarks or registered trademarks
of International Business Machines Corporation in the United States,
other countries, or both.

* Linux is a registered trademark of Linus Torvalds.

¢ Intel, Itanium, Intel Core, and Intel Xeon are trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or
both.

e Arm is a registered trademark of Arm Limited (or its subsidiaries) in
the US and/or elsewhere.

* SPARC is aregistered trademark of SPARC International, Inc. Products
bearing SPARC trademarks are based on an architecture developed by
Sun Microsystems, Inc.

e Other company, product, and service names may be trademarks or
service marks of such companies.

The non-source-code text and images in this document are provided under
the terms of the Creative Commons Attribution-Share Alike 3.0 United
States license.! In brief, you may use the contents of this document for
any purpose, personal, commercial, or otherwise, so long as attribution
to the authors is maintained. Likewise, the document may be modified,
and derivative works and translations made available, so long as such
modifications and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

! https://creativecommons.org/licenses/by-sa/3.0/us/

https://creativecommons.org/licenses/by-sa/3.0/us/

1
Source code is covered by various versions of the GPL.? Some of this
code is GPLv2-only, as it derives from the Linux kernel, while other code
is GPLv2-or-later. See the comment headers of the individual source files
within the CodeSamples directory in the git archive® for the exact licenses.
If you are unsure of the license for a given code fragment, you should assume
GPLv2-only.
Combined work © 2005-2022 by Paul E. McKenney. Each individual
contribution is copyright by its contributor at the time of contribution, as
recorded in the git archive.

2 https://www.gnu.org/licenses/gpl-2.0.html
3 git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.
git

https://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 How To Use This Book

1.1 Roadmap
1.2 Quick Quizzes
1.3 Alternatives to ThisBook
1.4 Sample SourceCode
1.5 Whose Book Is This?

2

3

Introduction

2.1 Historic Parallel Programming Difficulties
2.2 Parallel Programming Goals

2.2.1
222
223

Performance
Productivity oL
Generality L.

2.3 Alternatives to Parallel Programming

2.3.1
232
233

Multiple Instances of a Sequential Application
Use Existing Parallel Software
Performance Optimization

2.4 What Makes Parallel Programming Hard?

24.1
242
243
244
245
24.6

Work Partitioning
Parallel Access Control
Resource Partitioning and Replication
Interacting With Hardware
Composite Capabilities
How Do Languages and Environments Assist With
These Tasks?

25 Discussion.

Hardware and its Habits
3.1 Overview

3.1.1
3.12

PipelinedCPUs
Memory References

iii

32
33

34
34
35
39

3.1.3 Atomic Operations 39

3.14 Memory Barriers L. 41
3.1.5 CacheMisses 43
3.1.6 I/OOperations 44
32 Overheads 45
3.2.1 Hardware System Architecture 45
32.2 Costsof Operations 47
3.2.3 Hardware Optimizations 51
3.3 Hardware Free Lunch? 54
3.3.1 3DlIntegration 55
3.3.2 Novel Materials and Processes 56
3.3.3 Light, NotElectrons 57
3.34 Special-Purpose Accelerators 57
3.3.5 Existing Parallel Software 58
3.4 Software Design Implications 59
Tools of the Trade 62
4.1 Scripting Languages 62
4.2 POSIX Multiprocessing 64
4.2.1 POSIX Process Creation and Destruction 64
4.2.2 POSIX Thread Creation and Destruction 67
423 POSIXLocking. 69
424 POSIX Reader-Writer Locking 74
4.2.5 Atomic Operations (GCC Classic) 78
4.2.6 Atomic Operations (C11) 80
427 Atomic Operations (Modern GCC) 81
4.2.8 Per-Thread Variables 81
4.3 Alternatives to POSIX Operations 82
4.3.1 Organization and Initialization 82
4.3.2 Thread Creation, Destruction, and Control 83
433 Locking 86
4.3.4 Accessing Shared Variables 88
4.3.5 Atomic Operations 103
43.6 Per-CPU Variables 103

5

6

Counting

5.1 Why Isn’t Concurrent Counting Trivial?

5.2 Statistical Counters
52.1 Design
5.2.2 Array-Based Implementation
5.2.3 Per-Thread-Variable-Based Implementation . . .
5.24 Eventually Consistent Implementation
525 Discussion o000

5.3 Approximate Limit Counters
53.1 Design
5.3.2 Simple Limit Counter Implementation
5.3.3 Simple Limit Counter Discussion
5.3.4 Approximate Limit Counter Implementation
5.3.5 Approximate Limit Counter Discussion

5.4 ExactLimitCounters
5.4.1 Atomic Limit Counter Implementation
5.4.2 Atomic Limit Counter Discussion
5.4.3 Signal-Theft Limit Counter Design
5.4.4 Signal-Theft Limit Counter Implementation . . .
5.4.5 Signal-Theft Limit Counter Discussion
5.4.6 Applying Exact Limit Counters

5.5 Parallel Counting Discussion
5.5.1 Parallel Counting Validation
5.5.2 Parallel Counting Performance
5.5.3 Parallel Counting Specializations
5.5.4 Parallel Counting Lessons

Partitioning and Synchronization Design

6.1 Partitioning Exercises
6.1.1 Dining Philosophers Problem
6.1.2 Double-Ended Queue
6.1.3 Partitioning Example Discussion

6.2 Design Criteria

6.3 Synchronization Granularity
6.3.1 Sequential Program

108
109
113
113
114
116
119
122
123
123
125
134
134
135
135
136
144
144
146
153
153
155
156
157
158
159

6.3.2 CodeLocking 188

6.33 Datalocking 190

6.34 DataOwnership 194

6.3.5 Locking Granularity and Performance 195

6.4 Parallel Fastpath 199

6.4.1 Reader/Writer Locking 201

6.4.2 Hierarchical Locking 201

6.4.3 Resource Allocator Caches 204

6.5 Beyond Partitioning 0oL 212

6.5.1 Work-Queue Parallel Maze Solver 213

6.5.2 Alternative Parallel Maze Solver 216

6.5.3 Maze Validation 219

6.5.4 Performance ComparisonI 220

6.5.5 Alternative Sequential Maze Solver 224

6.5.6 Performance ComparisonIl 224

6.5.7 Future Directions and Conclusions 227

6.6 Partitioning, Parallelism, and Optimization 228

Locking 229

7.1 Staying Alive o 232

7.1.1 Deadlock 232

7.1.2 Livelock and Starvation 246

7.1.3 Unfairness 247

7.14 Inefficiency 249

7.2 TypesofLocks 251

7.2.1 Exclusive Locks 251

7.2.2 Reader-Writer Locks 253

7.2.3 Beyond Reader-Writer Locks 254

7.24 Scoped Locking 256

7.3 Locking Implementation Issues 260
7.3.1 Sample Exclusive-Locking Implementation Based

on Atomic Exchange 261

7.3.2 Other Exclusive-Locking Implementations . . . 262

7.4 Lock-Based Existence Guarantees 266

7.5 Locking: Hero or Villain? 269

10

7.5.1 Locking For Applications: Hero! 269
7.5.2 Locking For Parallel Libraries: Just Another Tool 270
7.5.3 Locking For Parallelizing Sequential Libraries: Vil-

lain! 276

7.6 Summary 279
Data Ownership 280
8.1 Multiple Processes 281
8.2 Partial Data Ownership and pthreads 282
8.3 Function Shipping 283
8.4 Designated Thread 284
85 Privatization. L L. 284
8.6 Other Uses of Data Ownership 286
Deferred Processing 288
9.1 RunningExample 288
9.2 Reference Counting 291
9.3 HazardPointers 296
94 Sequencelocks 306
9.5 Read-Copy Update (RCU) 313
9.5.1 IntroductiontoRCU 314

9.5.2 RCU Fundamentals 328

9.5.3 RCU Linux-Kernel API 344

954 RCUUsage 363

9.55 RCURelatedWork 400

9.6 WhichtoChoose? 406
9.6.1 Which to Choose? (Overview) 406
9.6.2 Which to Choose? (Details) 408
9.6.3 Which to Choose? (ProductionUse) 412

9.7 What About Updates? 415
Data Structures 416
10.1 Motivating Application 417
10.2 Partitionable Data Structures 417
10.2.1 Hash-Table Design 418

10.2.2 Hash-Table Implementation 418

10.3

10.4

10.5

10.6

10.7

10.2.3 Hash-Table Performance
Read-Mostly Data Structures
10.3.1 RCU-Protected Hash Table Implementation . . .
10.3.2 RCU-Protected Hash Table Validation
10.3.3 RCU-Protected Hash Table Performance
10.3.4 RCU-Protected Hash Table Discussion
Non-Partitionable Data Structures
10.4.1 Resizable Hash Table Design
10.4.2 Resizable Hash Table Implementation
10.4.3 Resizable Hash Table Discussion
10.4.4 Other Resizable Hash Tables
Other Data Structures
Micro-Optimization
10.6.1 Specialization
10.6.2 BitsandBytes
10.6.3 Hardware Considerations
Summary

11 Validation

11.1

11.2
11.3
11.4
11.5

11.6

Introduction oo L.
11.1.1 Where Do Bugs Come From?
11.1.2 Required Mindset

11.1.4 The Open Source Way
Tracing
Assertionso oo oL
Static Analysis
CodeReview
11.5.1 Inspection.
11.5.2 Walkthroughs
11.5.3 Self-Inspection
Probability and Heisenbugs
11.6.1 Statistics for Discrete Testing
11.6.2 Statistics Abuse for Discrete Testing
11.6.3 Statistics for Continuous Testing

422
426
426
429
430
437
439
439
442
451
453
458
459
460
461
462
465

11.6.4 Hunting Heisenbugs
11.7 Performance Estimation
11.7.1 Benchmarking
1172 Profiling
11.7.3 Differential Profiling
11.7.4 Microbenchmarking
11.7.5 Isolation
11.7.6 Detecting Interference
11.8 Summary

12 Formal Verification
12.1 State-Space Search
12.1.1 Promelaand Spin
12.1.2 HowtoUsePromela
12.1.3 Promela Example: Locking
12.1.4 Promela Example: QRCU
12.1.5 Promela Parable: dynticks and Preemptible RCU
12.1.6 Validating Preemptible RCU and dynticks
12.2 Special-Purpose State-Space Search
12.2.1 Anatomy of a Litmus Test
12.2.2 What Does This Litmus Test Mean?
12.2.3 Running aLitmus Test
12.2.4 PPCMEM Discussion
12.3 Axiomatic Approaches
12.3.1 Axiomatic Approaches and Locking
12.3.2 Axiomatic Approachesand RCU
124 SAT Solvers
12.5 Stateless Model Checkers
12.6 Summary
12.7 Choosing a ValidationPlan

13 Putting It All Together
13.1 Counter Conundrums
13.1.1 Counting Updates
13.1.2 Counting Lookups
13.2 Refurbish Reference Counting

X

13.2.1 Implementation of Reference-Counting Categories 613

13.2.2 Counter Optimizations 621
13.3 Hazard-Pointer Helpers 621
13.3.1 Scalable Reference Count 622
13.3.2 Long-Duration Accesses 622
13.4 Sequence-Locking Specials 623
13.4.1 Dueling Sequence Locks 623
13.4.2 Correlated Data Elements 624
13.43 AtomicMove 625
13.4.4 Upgradeto Writer 627
135 RCURescues oo i 628
13.5.1 RCU and Per-Thread-Variable-Based Statistical
Counters 628
13.5.2 RCU and Counters for Removable I/O Devices . 632
13.53 ArrayandLength 633
13.5.4 Correlated Fields 634
13.5.5 Update-Friendly Traversal 636
13.5.6 Scalable Reference Count Two 636
13.5.7 Retriggered Grace Periods 638
13.5.8 Long-Duration Accesses Two 641
14 Advanced Synchronization 644
14.1 AvoidingLocks 645
14.2 Non-Blocking Synchronization 646
142.1 SimpleNBS 647
14.2.2 Applicability of NBS Benefits 652
14.2.3 NBS Discussion 659
14.3 Parallel Real-Time Computing 660
14.3.1 What is Real-Time Computing? 660
14.3.2 Who Needs Real-Time? 670
14.3.3 Who Needs Parallel Real-Time? 671
14.3.4 Implementing Parallel Real-Time Systems 672

14.3.5 Implementing Parallel Real-Time Operating Systems 674
14.3.6 Implementing Parallel Real-Time Applications . 696
14.3.7 Real Time vs. Real Fast: How to Choose? 701

15 Advanced Synchronization: Memory Ordering
15.1 Ordering: Why and How?

15.1.2 How to Force Ordering?
15.1.3 BasicRulesof Thumb
152 Tricksand Traps o v v
15.2.1 Variables With Multiple Values
15.2.2 Memory-Reference Reordering
15.2.3 Address Dependencies
15.2.4 Data Dependencies
15.2.5 Control Dependencies
15.2.6 Cache Coherence
15.2.7 Multicopy Atomicity
15.3 Compile-Time Consternation
15.3.1 Memory-Reference Restrictions
15.3.2 Address- and Data-Dependency Difficulties . . .
15.3.3 Control-Dependency Calamities
15.4 Higher-Level Primitives
15.4.1 Memory Allocation.
1542 Locking
1543 RCU
15.5 Hardware Specifics
1551 Alpha oo oo L.
1552 Armv7-A/Ro
1553 Armv8o
1554 Itanium
1555 MIPS o ..
15.5.6 POWER/PowerPC
15,57 SPARCTSO
1558 x86
1559 zSystems o

16 Ease of Use 815

16.1 WhatisEasy? 815
16.2 Rusty Scale for APIDesign 816
16.3 Shaving the Mandelbrot Set. 819
17 Conflicting Visions of the Future 823
17.1 The Future of CPU Technology Ain’t What it Used to Be 823
17.1.1 Uniprocessor Uber Alles 825
17.1.2 Multithreaded Mania 827
17.1.3 MoreoftheSame 829
17.1.4 Crash Dummies Slamming into the Memory Wall 830
17.1.5 Astounding Accelerators 833

17.2 Transactional Memory 833
17.2.1 OutsideWorld 834
17.2.2 Process Modification 841
17.2.3 Synchronization 849
17.2.4 Discussion 856

17.3 Hardware Transactional Memory 861
17.3.1 HTM Benefits WRT Locking 862
17.3.2 HTM Weaknesses WRT Locking 864
17.3.3 HTM Weaknesses WRT Locking When Augmented 875
17.3.4 Where Does HTM Best FitIn? 877
17.3.5 Potential Game Changers 878
17.3.6 Conclusions 883

17.4 Formal Regression Testing? 884
17.4.1 Automatic Translation 885
1742 Environment 886
1743 Overhead 887
1744 Locate Bugs 889
17.4.5 Minimal Scaffolding 890
17.4.6 RelevantBugs 891
17.47 Formal Regression Scorecard 893

17.5 Functional Programming for Parallelism 895
17.6 Summary 897

18 Looking Forward and Back 898

A Important Questions 904

A.1 Why Aren’t Parallel Programs Always Faster? 905
A.2 Why Not Remove Locking? 905
A3 WhatTimeIsIt? 906
A.4 What Does “After” Mean? 908
A.5 How Much Ordering Is Needed? 913
A.5.1 Where is the Defining Data? 914
A.5.2 Consistent Data Used Consistently? 915
A.5.3 Is the Problem Partitionable? 916
A.54 Noneofthe Above?. 916

A.6 Whatis the Difference Between “Concurrent” and “Paralle]”? 916
A7 Why Is Software Buggy? 918
B “Toy” RCU Implementations 920
B.1 Lock-BasedRCU 920
B.2 Per-Thread Lock-BasedRCU 922
B.3 Simple Counter-Based RCU 923
B.4 Starvation-Free Counter-Based RCU 925
B.5 Scalable Counter-BasedRCU 930
B.6 Scalable Counter-Based RCU With Shared Grace Periods 933
B.7 RCU Based on Free-Running Counter 937
B.8 Nestable RCU Based on Free-Running Counter 940
B.9 RCU Based on Quiescent States 944
B.10 Summary of Toy RCU Implementations 947
C Why Memory Barriers? 950
C.1 CacheStructure 951
C.2 Cache-Coherence Protocols 954
C2.1 MESIStates 954
C.2.2 MESI Protocol Messages 955
C.2.3 MESI State Diagram 957
C.2.4 MESI Protocol Example 960

C.3 Stores Result in Unnecessary Stalls 961
C3.1 StoreBuffers 961
C.3.2 Store Forwarding 963

C.3.3 Store Buffers and Memory Barriers 966

C.4 Store Sequences Result in Unnecessary Stalls
C.4.1 InvalidateQueues.
C.4.2 Invalidate Queues and Invalidate Acknowledge
C.4.3 Invalidate Queues and Memory Barriers

C.5 Read and Write Memory Barriers

C.6 Example Memory-Barrier Sequences
C.6.1 Ordering-Hostile Architecture
C6.2 Examplel
C.63 Example2
C.64 Example3

C.7 Are Memory Barriers Forever?

C.8 Advice to Hardware Designers

Style Guide

D.1 Paul’sConventions

D2 NISTStyleGuide
D.2.1 UnitSymbol
D.2.2 NIST Guide Yet To Be Followed

D.3 KX Conventions
D.3.1 Monospace Font
D.3.2 Cross-reference
D.3.3 Non Breakable Spaces
D.3.4 Hyphenation and Dashes
D.3.5 Punctuation
D.3.6 Floating Object Format
D.3.7 Improvement Candidates

Answers to Quick Quizzes

E.1 HowToUseThisBook
E.2 Introduction
E.3 Hardware anditsHabits.
E4 ToolsoftheTrade
E5 Counting
E.6 Partitioning and Synchronization Design
E7 Locking
E.8 DataOwnership

970
970
970
972
976
971
971
979
980
981
982
983

E.9 Deferred Processing 1115

E.10 Data Structures 1151
E.11 Validation 1162
E.12 Formal Verification 1177
E.13 Putting It All Together 1193
E.14 Advanced Synchronization 1201
E.15 Advanced Synchronization: Memory Ordering 1208
E.16 EaseofUse 1233
E.17 Conflicting Visions of the Future 1234
E.18 Important Questions 1247
E.19 “Toy” RCU Implementations 1249
E.20 Why Memory Barriers? 1262
Glossary 1271
Bibliography 1289
Credits 1367
EIEX Advisor 1367
Reviewers L o 1367
Machine Owners 1368
Original Publications 1369
Figure Credits 1370
Other Support 1372
Acronyms 1374
Index 1376

API Index 1381

Chapter 1
How To Use This Book

If you would only recognize that life is hard, things
would be so much easier for you.

Louis D. Brandeis

The purpose of this book is to help you program shared-memory parallel
systems without risking your sanity.! Nevertheless, you should think of the
information in this book as a foundation on which to build, rather than as a
completed cathedral. Your mission, if you choose to accept, is to help make
further progress in the exciting field of parallel programming—progress
that will in time render this book obsolete.

Parallel programming in the 21% century is no longer focused solely on
science, research, and grand-challenge projects. And this is all to the good,
because it means that parallel programming is becoming an engineering
discipline. Therefore, as befits an engineering discipline, this book examines
specific parallel-programming tasks and describes how to approach them.
In some surprisingly common cases, these tasks can be automated.

This book is written in the hope that presenting the engineering discipline
underlying successful parallel-programming projects will free a new gener-
ation of parallel hackers from the need to slowly and painstakingly reinvent
old wheels, enabling them to instead focus their energy and creativity on
new frontiers. However, what you get from this book will be determined by
what you put into it. It is hoped that simply reading this book will be helpful,
and that working the Quick Quizzes will be even more helpful. However,
the best results come from applying the techniques taught in this book to
real-life problems. As always, practice makes perfect.

I Or, perhaps more accurately, without much greater risk to your sanity than that incurred
by non-parallel programming. Which, come to think of it, might not be saying all that much.

)

But no matter how you approach it, we sincerely hope that parallel
programming brings you at least as much fun, excitement, and challenge
that it has brought to us!

1.1 Roadmap

Cat: Where are you going?

Alice: Which way should I go?

Cat: That depends on where you are going.
Alice: I don’t know.

Cat: Then it doesn’t matter which way you go.

Lewis Carroll, Alice in Wonderland

This book is a handbook of widely applicable and heavily used design
techniques, rather than a collection of optimal algorithms with tiny areas
of applicability. You are currently reading Chapter 1, but you knew that
already. Chapter 2 gives a high-level overview of parallel programming.

Chapter 3 introduces shared-memory parallel hardware. After all, it is
difficult to write good parallel code unless you understand the underlying
hardware. Because hardware constantly evolves, this chapter will always
be out of date. We will nevertheless do our best to keep up. Chapter 4
then provides a very brief overview of common shared-memory parallel-
programming primitives.

Chapter 5 takes an in-depth look at parallelizing one of the simplest
problems imaginable, namely counting. Because almost everyone has
an excellent grasp of counting, this chapter is able to delve into many
important parallel-programming issues without the distractions of more-
typical computer-science problems. My impression is that this chapter has
seen the greatest use in parallel-programming coursework.

Chapter 6 introduces a number of design-level methods of addressing the
issues identified in Chapter 5. It turns out that it is important to address
parallelism at the design level when feasible: To paraphrase Dijkstra [Dij68],
“retrofitted parallelism considered grossly suboptimal” [McK12c].

The next three chapters examine three important approaches to synchro-
nization. Chapter 7 covers locking, which is still not only the workhorse
of production-quality parallel programming, but is also widely considered
to be parallel programming’s worst villain. Chapter 8 gives a brief over-
view of data ownership, an often overlooked but remarkably pervasive and
powerful approach. Finally, Chapter 9 introduces a number of deferred-
processing mechanisms, including reference counting, hazard pointers,
sequence locking, and RCU.

Chapter 10 applies the lessons of previous chapters to hash tables, which
are heavily used due to their excellent partitionability, which (usually) leads
to excellent performance and scalability.

As many have learned to their sorrow, parallel programming without
validation is a sure path to abject failure. Chapter 11 covers various forms
of testing. It is of course impossible to test reliability into your program
after the fact, so Chapter 12 follows up with a brief overview of a couple of
practical approaches to formal verification.

Chapter 13 contains a series of moderate-sized parallel programming
problems. The difficulty of these problems vary, but should be appropriate
for someone who has mastered the material in the previous chapters.

Chapter 14 looks at advanced synchronization methods, including non-
blocking synchronization and parallel real-time computing, while Chapter 15
covers the advanced topic of memory ordering. Chapter 16 follows up
with some ease-of-use advice. Chapter 17 looks at a few possible future
directions, including shared-memory parallel system design, software and
hardware transactional memory, and functional programming for parallelism.
Finally, Chapter 18 reviews the material in this book and its origins.

This chapter is followed by a number of appendices. The most popular of
these appears to be Appendix C, which delves even further into memory
ordering. Appendix E contains the answers to the infamous Quick Quizzes,
which are discussed in the next section.

1.2 Quick Quizzes

Undertake something difficult, otherwise you will
never grow.

Abbreviated from Ronald E. Osburn

“Quick quizzes” appear throughout this book, and the answers may be found
in Appendix E starting on page 1017. Some of them are based on material
in which that quick quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the realm of current knowledge. As
with most endeavors, what you get out of this book is largely determined by
what you are willing to put into it. Therefore, readers who make a genuine
effort to solve a quiz before looking at the answer find their effort repaid
handsomely with increased understanding of parallel programming.

[Quick Quiz 1.1: Where are the answers to the Quick Quizzes found? W]

Quick Quiz 1.2: Some of the Quick Quiz questions seem to be from the viewpoint
of the reader rather than the author. Is that really the intent? B

Quick Quiz 1.3: These Quick Quizzes are just not my cup of tea. What can I do
about it? Wl

In short, if you need a deep understanding of the material, then you
should invest some time into answering the Quick Quizzes. Don’t get me
wrong, passively reading the material can be quite valuable, but gaining
full problem-solving capability really does require that you practice solving
problems. Similarly, gaining full code-production capability really does
require that you practice producing code.

Quick Quiz 1.4: If passively reading this book doesn’t get me full problem-solving
and code-production capabilities, what on earth is the point??? H

I learned this the hard way during coursework for my late-in-life Ph.D. I
was studying a familiar topic, and was surprised at how few of the chapter’s

5

exercises I could answer off the top of my head.” Forcing myself to answer
the questions greatly increased my retention of the material. So with these
Quick Quizzes I am not asking you to do anything that I have not been doing
myself.

Finally, the most common learning disability is thinking that you already
understand the material at hand. The quick quizzes can be an extremely
effective cure.

1.3 Alternatives to This Book

Between two evils I always pick the one I never tried
before.

Mae West

As Knuth learned the hard way, if you want your book to be finite, it must
be focused. This book focuses on shared-memory parallel programming,
with an emphasis on software that lives near the bottom of the software
stack, such as operating-system kernels, parallel data-management systems,
low-level libraries, and the like. The programming language used by this
book is C.

If you are interested in other aspects of parallelism, you might well be
better served by some other book. Fortunately, there are many alternatives
available to you:

1. If you prefer a more academic and rigorous treatment of parallel
programming, you might like Herlihy’s and Shavit’s textbook [HS08,
HSLS20]. This book starts with an interesting combination of low-
level primitives at high levels of abstraction from the hardware, and
works its way through locking and simple data structures including
lists, queues, hash tables, and counters, culminating with transactional
memory, all in Java. Michael Scott’s textbook [Scol3] approaches
similar material with more of a software-engineering focus, and, as

2 So I suppose that it was just as well that my professors refused to let me waive that class!

6

far as I know, is the first formally published academic textbook with
section devoted to RCU.

Herlihy, Shavit, Luchangco, and Spear did catch up in their second
edition [HSLS20] by adding short sections on hazard pointers and on
RCU, with the latter in the guise of EBR.? They also include a brief
history of both, albeit with an abbreviated history of RCU that picks
up almost a year after it was accepted into the Linux kernel and more
than 20 years after Kung’s and Lehman’s landmark paper [KLS80].
Those wishing a deeper view of the history may find it in this book’s
Section 9.5.5.

However, readers who might otherwise suspect a hostile attitude towards
RCU on the part of this textbook’s first author should refer to the last
full sentence on the first page of one of his papers [BGHZ16]. This
sentence reads “QSBR [a particular class of RCU implementations]
is fast and can be applied to virtually any data structure.” These are
clearly not the words of someone who is hostile towards RCU.

2. If you would like an academic treatment of parallel programming from a
programming-language-pragmatics viewpoint, you might be interested
in the concurrency chapter from Scott’s textbook [Sco06, Scol5] on
programming-language pragmatics.

3. If you are interested in an object-oriented patternist treatment of parallel
programming focussing on C++, you might try Volumes 2 and 4 of
Schmidt’s POSA series [SSRB00, BHS07]. Volume 4 in particular
has some interesting chapters applying this work to a warehouse
application. The realism of this example is attested to by the section
entitled “Partitioning the Big Ball of Mud”, in which the problems
inherent in parallelism often take a back seat to getting one’s head
around a real-world application.

4. If you want to work with Linux-kernel device drivers, then Corbet’s,
Rubini’s, and Kroah-Hartman’s “Linux Device Drivers” [CRKHO05]

3 Albeit an implementation that contains a reader-preemption bug noted by Richard
Bornat.

10.

11.

12.

7

is indispensable, as is the Linux Weekly News web site (https:
//lwn.net/). There is a large number of books and resources on the
more general topic of Linux kernel internals.

. If your primary focus is scientific and technical computing, and

you prefer a patternist approach, you might try Mattson et al.’s text-
book [MSMOS]. It covers Java, C/C++, OpenMP, and MPI. Its patterns
are admirably focused first on design, then on implementation.

If your primary focus is scientific and technical computing, and you
are interested in GPUs, CUDA, and MPI, you might check out Norm
Matloff’s “Programming on Parallel Machines” [Mat17]. Of course,
the GPU vendors have quite a bit of additional information [AMD20,
Zell1,NVil7a, NVil7b].

If you are interested in POSIX Threads, you might take a look at
David R. Butenhof’s book [But97]. In addition, W. Richard Stevens’s
book [Ste92, Stel13] covers UNIX and POSIX, and Stewart Weiss’s
lecture notes [Weil 3] provide an thorough and accessible introduction
with a good set of examples.

If you are interested in C++11, you might like Anthony Williams’s “C++
Concurrency in Action: Practical Multithreading” [Will12, Wil19].

If you are interested in C++, but in a Windows environment, you
might try Herb Sutter’s “Effective Concurrency” series in Dr. Dobbs
Journal [Sut08]. This series does a reasonable job of presenting a
commonsense approach to parallelism.

If you want to try out Intel Threading Building Blocks, then perhaps
James Reinders’s book [Rei07] is what you are looking for.

Those interested in learning how various types of multi-processor
hardware cache organizations affect the implementation of kernel
internals should take a look at Curt Schimmel’s classic treatment of
this subject [Sch94].

If you are looking for a hardware view, Hennessy’s and Patterson’s
classic textbook [HP17, HP11] is well worth aread. A “Readers Digest”

https://lwn.net/
https://lwn.net/

8

version of this tome geared for scientific and technical workloads
(bashing big arrays) may be found in Andrew Chien’s textbook [Chi22].
If you are looking for an academic textbook on memory ordering, that
of Daniel Sorin et al. [SHW11, NSHW20] is highly recommended.
For a memory-ordering tutorial from a Linux-kernel viewpoint, Paolo
Bonzini’s LWN series is a good place to start [Bon2la, Bon2le,
Bon21c, Bon21b, Bon21d, Bon21f].

13. Finally, those using Java might be well-served by Doug Lea’s text-
books [Lea97, GPB*07].

However, if you are interested in principles of parallel design for low-level
software, especially software written in C, read on!

1.4 Sample Source Code

Use the source, Luke!

Unknown Star Wars fan

This book discusses its fair share of source code, and in many cases this
source code may be found in the CodeSamples directory of this book’s
git tree. For example, on UNIX systems, you should be able to type the
following:

find CodeSamples -name rcu_rcpls.c -print

This command will locate the file rcu_rcpls.c, which is called out
in Appendix B. Non-UNIX systems have their own well-known ways of
locating files by filename.

Listing 1.1: Creating an Up-To-Date PDF

git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
cd perfbook

You may need to install a font. See item 1 in FAQ.txt.

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-lc.pdf

evince perfbook-lc.pdf & # One-column version for e-readers

make help # Display other build options

1.5 Whose Book Is This?

If you become a teacher, by your pupils you’ll be
taught.

Oscar Hammerstein 11

As the cover says, the editor is one Paul E. McKenney. However, the editor
does accept contributions via the perfbook@vger.kernel.org email list.
These contributions can be in pretty much any form, with popular approaches
including text emails, patches against the book’s I&TEX source, and even
git pull requests. Use whatever form works best for you.

To create patches or git pull requests, you will need the IATEX source
to the book, which is at git://git.kernel.org/pub/scm/linux/
kernel/git/paulmck/perfbook.git. You will of course also need
git and I&TEX, which are available as part of most mainstream Linux distri-
butions. Other packages may be required, depending on the distribution you
use. The required list of packages for a few popular distributions is listed in
the file FAQ-BUILD. txt in the IATEX source to the book.

To create and display a current IXTEX source tree of this book, use the
list of Linux commands shown in Listing 1.1. In some environments, the
evince command that displays perfbook.pdf may need to be replaced,
for example, with acroread. The git clone command need only be used
the first time you create a PDF, subsequently, you can run the commands
shown in Listing 1.2 to pull in any updates and generate an updated PDF.
The commands in Listing 1.2 must be run within the perfbook directory
created by the commands shown in Listing 1.1.

mailto:perfbook@vger.kernel.org
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Listing 1.2: Generating an Updated PDF

git remote update

git checkout origin/master

make # -jN for parallel build

evince perfbook.pdf & # Two-column version

make perfbook-1c.pdf

evince perfbook-lc.pdf & # One-column version for e-readers

PDFs of this book are sporadically posted at https://kernel.org/
pub/linux/kernel/people/paulmck/perfbook/perfbook.html
and at http://www.rdrop.com/users/paulmck/perfbook/.

The actual process of contributing patches and sending git
pull requests is similar to that of the Linux kernel, which is
documented here: https://www.kernel.org/doc/html/latest/
process/submitting-patches.html. One important requirement is
that each patch (or commit, in the case of a git pull request) must contain
a valid Signed-off-by: line, which has the following format:

Signed-off-by: My Name <mynameQexample.org>

Please see https://1kml.org/1kml/2007/1/15/219 for an example
patch with a Signed-off-by: line. Note well that the Signed-off-by:
line has a very specific meaning, namely that you are certifying that:

(a) The contribution was created in whole or in part by me and I have the
right to submit it under the open source license indicated in the file; or

(b) The contribution is based upon previous work that, to the best of my
knowledge, is covered under an appropriate open source license and I
have the right under that license to submit that work with modifications,
whether created in whole or in part by me, under the same open source
license (unless I am permitted to submit under a different license), as
indicated in the file; or

(c) The contribution was provided directly to me by some other person
who certified (a), (b) or (c¢) and I have not modified it.

https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://lkml.org/lkml/2007/1/15/219

11

(d) I'understand and agree that this project and the contribution are public
and that a record of the contribution (including all personal information
I submit with it, including my sign-off) is maintained indefinitely and
may be redistributed consistent with this project or the open source
license(s) involved.

This is quite similar to the Developer’s Certificate of Origin (DCO) 1.1
used by the Linux kernel. You must use your real name: I unfortunately
cannot accept pseudonymous or anonymous contributions.

The language of this book is American English, however, the open-source
nature of this book permits translations, and I personally encourage them.
The open-source licenses covering this book additionally allow you to sell
your translation, if you wish. I do request that you send me a copy of the
translation (hardcopy if available), but this is a request made as a professional
courtesy, and is not in any way a prerequisite to the permission that you
already have under the Creative Commons and GPL licenses. Please see the
FAQ. txt file in the source tree for a list of translations currently in progress.
I consider a translation effort to be “in progress” once at least one chapter
has been fully translated.

There are many styles under the “American English” rubric. The style
for this particular book is documented in Appendix D.

As noted at the beginning of this section, I am this book’s editor. However,
if you choose to contribute, it will be your book as well. In that spirit, I offer
you Chapter 2, our introduction.

Chapter 2
Introduction

If parallel programming is so hard, why are there so
many parallel programs?

Unknown

Parallel programming has earned a reputation as one of the most difficult
areas a hacker can tackle. Papers and textbooks warn of the perils of
deadlock, livelock, race conditions, non-determinism, Amdahl’s-Law limits
to scaling, and excessive realtime latencies. And these perils are quite real;
we authors have accumulated uncounted years of experience along with the
resulting emotional scars, grey hairs, and hair loss.

However, new technologies that are difficult to use at introduction invari-
ably become easier over time. For example, the once-rare ability to drive a
car is now commonplace in many countries. This dramatic change came
about for two basic reasons: (1) Cars became cheaper and more readily
available, so that more people had the opportunity to learn to drive, and
(2) Cars became easier to operate due to automatic transmissions, automatic
chokes, automatic starters, greatly improved reliability, and a host of other
technological improvements.

The same is true for many other technologies, including computers. It is
no longer necessary to operate a keypunch in order to program. Spreadsheets
allow most non-programmers to get results from their computers that would
have required a team of specialists a few decades ago. Perhaps the most
compelling example is web-surfing and content creation, which since the
early 2000s has been easily done by untrained, uneducated people using
various now-commonplace social-networking tools. As recently as 1968,
such content creation was a far-out research project [Eng68], described at
the time as “like a UFO landing on the White House lawn” [Gri00].

Therefore, if you wish to argue that parallel programming will remain as
difficult as it is currently perceived by many to be, it is you who bears the

13

burden of proof, keeping in mind the many centuries of counter-examples
in many fields of endeavor.

2.1 Historic Parallel Programming Difficulties

Not the power to remember, but its very opposite, the
power to forget, is a necessary condition for our
existence.

Sholem Asch

As indicated by its title, this book takes a different approach. Rather than
complain about the difficulty of parallel programming, it instead examines
the reasons why parallel programming is difficult, and then works to help
the reader to overcome these difficulties. As will be seen, these difficulties
have historically fallen into several categories, including:

1. The historic high cost and relative rarity of parallel systems.

2. The typical researcher’s and practitioner’s lack of experience with
parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering discipline of parallel
programming.

5. The high overhead of communication relative to that of processing,
even in tightly coupled shared-memory computers.

Many of these historic difficulties are well on the way to being overcome.
First, over the past few decades, the cost of parallel systems has decreased
from many multiples of that of a house to that of a modest meal, courtesy of
Moore’s Law [M0065]. Papers calling out the advantages of multicore CPUs
were published as early as 1996 [ONH*96]. IBM introduced simultaneous
multi-threading into its high-end POWER family in 2000, and multicore in
2001. Intel introduced hyperthreading into its commodity Pentium line in

14

November 2000, and both AMD and Intel introduced dual-core CPUs in
2005. Sun followed with the multicore/multi-threaded Niagara in late 2005.
In fact, by 2008, it was becoming difficult to find a single-CPU desktop
system, with single-core CPUs being relegated to netbooks and embedded
devices. By 2012, even smartphones were starting to sport multiple CPUs.
By 2020, safety-critical software standards started addressing concurrency.

Second, the advent of low-cost and readily available multicore systems
means that the once-rare experience of parallel programming is now available
to almost all researchers and practitioners. In fact, parallel systems have
long been within the budget of students and hobbyists. We can therefore
expect greatly increased levels of invention and innovation surrounding
parallel systems, and that increased familiarity will over time make the once
prohibitively expensive field of parallel programming much more friendly
and commonplace.

Third, in the 20" century, large systems of highly parallel software were
almost always closely guarded proprietary secrets. In happy contrast, the
21% century has seen numerous open-source (and thus publicly available)
parallel software projects, including the Linux kernel [Tor03], database
systems [Pos08, MS08], and message-passing systems [The08, UniO8a].
This book will draw primarily from the Linux kernel, but will provide much
material suitable for user-level applications.

Fourth, even though the large-scale parallel-programming projects of the
1980s and 1990s were almost all proprietary projects, these projects have
seeded other communities with cadres of developers who understand the
engineering discipline required to develop production-quality parallel code.
A major purpose of this book is to present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of communication relative
to that of processing, remains largely in force. This difficulty has been
receiving increasing attention during the new millennium. However, ac-
cording to Stephen Hawking, the finite speed of light and the atomic nature
of matter will limit progress in this area [Gar07, Moo03]. Fortunately, this
difficulty has been in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective strategies for
handling it. In addition, hardware designers are increasingly aware of these

15

issues, so perhaps future hardware will be more friendly to parallel software,
as discussed in Section 3.3.

Quick Quiz 2.1: Come on now!!! Parallel programming has been known to be
exceedingly hard for many decades. You seem to be hinting that it is not so hard.
What sort of game are you playing? H

However, even though parallel programming might not be as hard as is
commonly advertised, it is often more work than is sequential programming.

Quick Quiz 2.2: How could parallel programming ever be as easy as sequential
programming? W

It therefore makes sense to consider alternatives to parallel programming.
However, it is not possible to reasonably consider parallel-programming
alternatives without understanding parallel-programming goals. This topic
is addressed in the next section.

2.2 Parallel Programming Goals

If you don’t know where you are going, you will end
up somewhere else.

Yogi Berra

The three major goals of parallel programming (over and above those of
sequential programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Unfortunately, given the current state of the art, it is possible to achieve
at best two of these three goals for any given parallel program. These three

16

goals therefore form the iron triangle of parallel programming, a triangle
upon which overly optimistic hopes all too often come to grief.!

Quick Quiz 2.3: Oh, really??? What about correctness, maintainability,
robustness, and so on? W

Quick Quiz 2.4: And if correctness, maintainability, and robustness don’t make
the list, why do productivity and generality?

Quick Quiz 2.5: Given that parallel programs are much harder to prove correct
than are sequential programs, again, shouldn’t correctness really be on the list? H

[Quick Quiz 2.6: What about just having fun? H]

Each of these goals is elaborated upon in the following sections.

2.2.1 Performance

Performance is the primary goal behind most parallel-programming effort.
After all, if performance is not a concern, why not do yourself a favor: Just
write sequential code, and be happy? It will very likely be easier and you
will probably get done much more quickly.

Quick Quiz 2.7: Are there no cases where parallel programming is about
something other than performance? H

Note that “performance” is interpreted broadly here, including for example
scalability (performance per CPU) and efficiency (performance per watt).

That said, the focus of performance has shifted from hardware to parallel
software. This change in focus is due to the fact that, although Moore’s
Law continues to deliver increases in transistor density, it has ceased to
provide the traditional single-threaded performance increases. This can
be seen in Figure 2.1,> which shows that writing single-threaded code and

! Kudos to Michael Wong for naming the iron triangle.

2 This plot shows clock frequencies for newer CPUs theoretically capable of retiring one
or more instructions per clock, and MIPS (millions of instructions per second, usually from
the old Dhrystone benchmark) for older CPUs requiring multiple clocks to execute even the
simplest instruction. The reason for shifting between these two measures is that the newer

10000

E \ NRE
%) i W
o X]
S 1000 ¢
% F E
& 100 | f 2
(o2 - + 3
(0] B +]
s ' g]
10 ++ —
el 3 + E
S i #+ +]
o) 1 3 + =
5 e E

01 N N R NN N R
K 8 8 6 6 o 82 L8
o o O ® ® © & O o O
~— ~— ~— ~— ~— A Al Al A Al

Year

Figure 2.1: MIPS/Clock-Frequency Trend for Intel CPUs

simply waiting a year or two for the CPUs to catch up may no longer be
an option. Given the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is the way to go for
those wanting to avail themselves of the full performance of their systems.

Quick Quiz 2.8: Why not instead rewrite programs from inefficient scripting
languages to C or C++? H

Even so, the first goal is performance rather than scalability, especially
given that the easiest way to attain linear scalability is to reduce the
performance of each CPU [TorO1]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions per second on a single
CPU, but does not scale at all? Or a program that provides 10 transactions

CPUs’ ability to retire multiple instructions per clock is typically limited by memory-system
performance. Furthermore, the benchmarks commonly used on the older CPUs are obsolete,
and it is difficult to run the newer benchmarks on systems containing the old CPUs, in part
because it is hard to find working instances of the old CPUs.

18

per second on a single CPU, but scales perfectly? The first program seems
like a better bet, though the answer might change if you happened to have a
32-CPU system.

That said, just because you have multiple CPUs is not necessarily in and
of itself a reason to use them all, especially given the recent decreases in
price of multi-CPU systems. The key point to understand is that parallel
programming is primarily a performance optimization, and, as such, it is
one potential optimization of many. If your program is fast enough as
currently written, there is no reason to optimize, either by parallelizing it or
by applying any of a number of potential sequential optimizations.> By the
same token, if you are looking to apply parallelism as an optimization to a
sequential program, then you will need to compare parallel algorithms to
the best sequential algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing the performance of
parallel algorithms.

2.2.2 Productivity

Quick Quiz 2.9: Why all this prattling on about non-technical issues??? And
not just any non-technical issue, but productivity of all things? Who cares? Wl

Productivity has been becoming increasingly important in recent decades.
To see this, consider that the price of early computers was tens of millions
of dollars at a time when engineering salaries were but a few thousand
dollars a year. If dedicating a team of ten engineers to such a machine would
improve its performance, even by only 10 %, then their salaries would be
repaid many times over.

One such machine was the CSIRAC, the oldest still-intact stored-program
computer, which was put into operation in 1949 [Mus04, Dep06]. Because
this machine was built before the transistor era, it was constructed of 2,000
vacuum tubes, ran with a clock frequency of 1 kHz, consumed 30 kW of
power, and weighed more than three metric tons. Given that this machine

3 Of course, if you are a hobbyist whose primary interest is writing parallel software, that
is more than enough reason to parallelize whatever software you are interested in.

19

6
X100 1T T T T T T 1

100000 +F
4
10000
3 +F
= 1000 f“"
o
¢ 100 +Tfr
= 10 +++¢;
1 + Tt
+
0.1 | | | | | | | |
Te] o T} o Te] o To] o 0 o
N~ [e0) [e0) D (2] o o ~— ~— Al
D ()] ()] (o)) (e)) o o o o o
Year

Figure 2.2: MIPS per Die for Intel CPUs

had but 768 words of RAM, it is safe to say that it did not suffer from the
productivity issues that often plague today’s large-scale software projects.

Today, it would be quite difficult to purchase a machine with so little
computing power. Perhaps the closest equivalents are 8-bit embedded
microprocessors exemplified by the venerable Z80 [WikO08], but even the
old Z80 had a CPU clock frequency more than 1,000 times faster than the
CSIRAC. The Z80 CPU had 8,500 transistors, and could be purchased in
2008 for less than $2 US per unit in 1,000-unit quantities. In stark contrast
to the CSIRAC, software-development costs are anything but insignificant
for the Z80.

The CSIRAC and the Z80 are two points in a long-term trend, as can be
seen in Figure 2.2. This figure plots an approximation to computational
power per die over the past four decades, showing an impressive six-order-
of-magnitude increase over a period of forty years. Note that the advent of
multicore CPUs has permitted this increase to continue apace despite the

20

clock-frequency wall encountered in 2003, albeit courtesy of dies supporting
more than 50 hardware threads each.

One of the inescapable consequences of the rapid decrease in the cost of
hardware is that software productivity becomes increasingly important. It is
no longer sufficient merely to make efficient use of the hardware: It is now
necessary to make extremely efficient use of software developers as well.
This has long been the case for sequential hardware, but parallel hardware
has become a low-cost commodity only recently. Therefore, only recently
has high productivity become critically important when creating parallel
software.

Quick Quiz 2.10: Given how cheap parallel systems have become, how can
anyone afford to pay people to program them? W

Perhaps at one time, the sole purpose of parallel software was performance.
Now, however, productivity is gaining the spotlight.

2.2.3 Generality

One way to justify the high cost of developing parallel software is to strive
for maximal generality. All else being equal, the cost of a more-general
software artifact can be spread over more users than that of a less-general
one. In fact, this economic force explains much of the maniacal focus on
portability, which can be seen as an important special case of generality.*
Unfortunately, generality often comes at the cost of performance, produc-
tivity, or both. For example, portability is often achieved via adaptation
layers, which inevitably exact a performance penalty. To see this more gen-
erally, consider the following popular parallel programming environments:

C/C++ “Locking Plus Threads”: This category, which includes POSIX
Threads (pthreads) [Ope97], Windows Threads, and numerous
operating-system kernel environments, offers excellent performance
(at least within the confines of a single SMP system) and also offers
good generality. Pity about the relatively low productivity.

4 Kudos to Michael Wong for pointing this out.

21

Java: This general purpose and inherently multithreaded programming
environment is widely believed to offer much higher productivity than
C or C++, courtesy of the automatic garbage collector and the rich set
of class libraries. However, its performance, though greatly improved
in the early 2000s, lags that of C and C++.

MPI: This Message Passing Interface [MPIO8] powers the largest scientific
and technical computing clusters in the world and offers unparalleled
performance and scalability. In theory, it is general purpose, but it is
mainly used for scientific and technical computing. Its productivity is
believed by many to be even lower than that of C/C++ “locking plus
threads” environments.

OpenMP: This set of compiler directives can be used to parallelize loops.
It is thus quite specific to this task, and this specificity often limits its
performance. It is, however, much easier to use than MPI or C/C++
“locking plus threads.”

SQL: Structured Query Language [Int92] is specific to relational database
queries. However, its performance is quite good as measured by
the Transaction Processing Performance Council (TPC) benchmark
results [Tra01]. Productivity is excellent; in fact, this parallel program-
ming environment enables people to make good use of a large parallel
system despite having little or no knowledge of parallel programming
concepts.

The nirvana of parallel programming environments, one that offers world-
class performance, productivity, and generality, simply does not yet exist.
Until such a nirvana appears, it will be necessary to make engineering
tradeoffs among performance, productivity, and generality. One such
tradeoff is depicted by the green “iron triangle™ shown in Figure 2.3, which
shows how productivity becomes increasingly important at the upper layers
of the system stack, while performance and generality become increasingly
important at the lower layers of the system stack. The huge development
costs incurred at the lower layers must be spread over equally huge numbers

5 Kudos to Michael Wong for coining “iron triangle.”

22

Productivity

Performance
Ajjesauan

Figure 2.3: Software Layers and Performance, Productivity, and Generality

of users (hence the importance of generality), and performance lost in lower
layers cannot easily be recovered further up the stack. In the upper layers of
the stack, there might be very few users for a given specific application, in
which case productivity concerns are paramount. This explains the tendency
towards “bloatware” further up the stack: Extra hardware is often cheaper
than extra developers. This book is intended for developers working near
the bottom of the stack, where performance and generality are of greatest
concern.

It is important to note that a tradeoff between productivity and generality
has existed for centuries in many fields. For but one example, a nailgun
is more productive than a hammer for driving nails, but in contrast to the
nailgun, a hammer can be used for many things besides driving nails. It
should therefore be no surprise to see similar tradeoffs appear in the field
of parallel computing. This tradeoff is shown schematically in Figure 2.4.
Here, users 1, 2, 3, and 4 have specific jobs that they need the computer to
help them with. The most productive possible language or environment for

v2022.09.25a

Special-Purpose
~=<— Env Productive

for User 1

~~ A

Special-Purpose
Environment
Productlve for User 2

User 3 General- Purpose User 4
Environment

Special-Purpose Environment

Productive for User 3 Special-Purpose

Environment
Productive for User 4

Figure 2.4: Tradeoff Between Productivity and Generality

a given user is one that simply does that user’s job, without requiring any
programming, configuration, or other setup.

Quick Quiz 2.11: This is a ridiculously unachievable ideal! Why not focus on
something that is achievable in practice? H

Unfortunately, a system that does the job required by user 1 is unlikely
to do user 2’s job. In other words, the most productive languages and
environments are domain-specific, and thus by definition lacking generality.

Another option is to tailor a given programming language or environment
to the hardware system (for example, low-level languages such as assembly,
C, C++, or Java) or to some abstraction (for example, Haskell, Prolog, or
Snobol), as is shown by the circular region near the center of Figure 2.4.
These languages can be considered to be general in the sense that they
are equally ill-suited to the jobs required by users 1, 2, 3, and 4. In other
words, their generality comes at the expense of decreased productivity
when compared to domain-specific languages and environments. Worse
yet, a language that is tailored to a given abstraction is likely to suffer from

v2022.09.25a

24

performance and scalability problems unless and until it can be efficiently
mapped to real hardware.

Is there no escape from iron triangle’s three conflicting goals of perfor-
mance, productivity, and generality?

It turns out that there often is an escape, for example, using the alternatives
to parallel programming discussed in the next section. After all, parallel
programming can be a great deal of fun, but it is not always the best tool for
the job.

2.3 Alternatives to Parallel Programming

Experiment is folly when experience shows the way.

Roger M. Babson

In order to properly consider alternatives to parallel programming, you must
first decide on what exactly you expect the parallelism to do for you. As seen
in Section 2.2, the primary goals of parallel programming are performance,
productivity, and generality. Because this book is intended for developers
working on performance-critical code near the bottom of the software stack,
the remainder of this section focuses primarily on performance improvement.

It is important to keep in mind that parallelism is but one way to improve
performance. Other well-known approaches include the following, in
roughly increasing order of difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.
3. Optimize the serial application.

These approaches are covered in the following sections.

2.3.1 Multiple Instances of a Sequential Application

Running multiple instances of a sequential application can allow you to do
parallel programming without actually doing parallel programming. There

25

are a large number of ways to approach this, depending on the structure of
the application.

If your program is analyzing a large number of different scenarios, or is
analyzing a large number of independent data sets, one easy and effective
approach is to create a single sequential program that carries out a single
analysis, then use any of a number of scripting environments (for example
the bash shell) to run a number of instances of that sequential program in
parallel. In some cases, this approach can be easily extended to a cluster of
machines.

This approach may seem like cheating, and in fact some denigrate
such programs as “embarrassingly parallel”. And in fact, this approach
does have some potential disadvantages, including increased memory
consumption, waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is often extremely
productive, garnering extreme performance gains with little or no added
effort.

2.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software environments that can
present a single-threaded programming environment, including relational
databases [Dat82], web-application servers, and map-reduce environments.
For example, a common design provides a separate process for each user,
each of which generates SQL from user queries. This per-user SQL is run
against a common relational database, which automatically runs the users’
queries concurrently. The per-user programs are responsible only for the
user interface, with the relational database taking full responsibility for the
difficult issues surrounding parallelism and persistence.

In addition, there are a growing number of parallel library functions,
particularly for numeric computation. Even better, some libraries take
advantage of special-purpose hardware such as vector units and general-
purpose graphical processing units (GPGPUs).

Taking this approach often sacrifices some performance, at least when
compared to carefully hand-coding a fully parallel application. However,
such sacrifice is often well repaid by a huge reduction in development effort.

26

Quick Quiz 2.12: Wait a minute! Doesn’t this approach simply shift the
development effort from you to whoever wrote the existing parallel software you
are using? W

2.3.3 Performance Optimization

Up through the early 2000s, CPU clock frequencies doubled every 18
months. It was therefore usually more important to create new functionality
than to carefully optimize performance. Now that Moore’s Law is “only”
increasing transistor density instead of increasing both transistor density and
per-transistor performance, it might be a good time to rethink the importance
of performance optimization. After all, new hardware generations no longer
bring significant single-threaded performance improvements. Furthermore,
many performance optimizations can also conserve energy.

From this viewpoint, parallel programming is but another performance
optimization, albeit one that is becoming much more attractive as parallel
systems become cheaper and more readily available. However, it is wise to
keep in mind that the speedup available from parallelism is limited to roughly
the number of CPUs (but see Section 6.5 for an interesting exception). In
contrast, the speedup available from traditional single-threaded software
optimizations can be much larger. For example, replacing a long linked list
with a hash table or a search tree can improve performance by many orders
of magnitude. This highly optimized single-threaded program might run
much faster than its unoptimized parallel counterpart, making parallelization
unnecessary. Of course, a highly optimized parallel program would be even
better, aside from the added development effort required.

Furthermore, different programs might have different performance bottle-
necks. For example, if your program spends most of its time waiting on data
from your disk drive, using multiple CPUs will probably just increase the
time wasted waiting for the disks. In fact, if the program was reading from
a single large file laid out sequentially on a rotating disk, parallelizing your
program might well make it a lot slower due to the added seek overhead. You
should instead optimize the data layout so that the file can be smaller (thus
faster to read), split the file into chunks which can be accessed in parallel

27

from different drives, cache frequently accessed data in main memory, or, if
possible, reduce the amount of data that must be read.

Quick Quiz 2.13: What other bottlenecks might prevent additional CPUs from
providing additional performance? WM

Parallelism can be a powerful optimization technique, but it is not the only
such technique, nor is it appropriate for all situations. Of course, the easier
it is to parallelize your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of being quite difficult,
which leads to the question “exactly what makes parallel programming so
difficult?”

2.4 'What Makes Parallel Programming Hard?

Real difficulties can be overcome; it is only the
imaginary ones that are unconquerable.

Theodore N. Vail

It is important to note that the difficulty of parallel programming is as
much a human-factors issue as it is a set of technical properties of the
parallel programming problem. We do need human beings to be able to
tell parallel systems what to do, otherwise known as programming. But
parallel programming involves two-way communication, with a program’s
performance and scalability being the communication from the machine to
the human. In short, the human writes a program telling the computer what
to do, and the computer critiques this program via the resulting performance
and scalability. Therefore, appeals to abstractions or to mathematical
analyses will often be of severely limited utility.

In the Industrial Revolution, the interface between human and machine
was evaluated by human-factor studies, then called time-and-motion studies.
Although there have been a few human-factor studies examining parallel
programming [ENS05, ES05, HCS*05, SS94], these studies have been
extremely narrowly focused, and hence unable to demonstrate any general
results. Furthermore, given that the normal range of programmer produc-

e N
Performance Productivity

Generality

AN J

Figure 2.5: Categories of Tasks Required of Parallel Programmers

tivity spans more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10 % difference in
productivity. Although the multiple-order-of-magnitude differences that
such studies can reliably detect are extremely valuable, the most impressive
improvements tend to be based on a long series of 10 % improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks that parallel program-
mers must undertake that are not required of sequential programmers. We
can then evaluate how well a given programming language or environment
assists the developer with these tasks. These tasks fall into the four categories
shown in Figure 2.5, each of which is covered in the following sections.

24.1 Work Partitioning

Work partitioning is absolutely required for parallel execution: If there is
but one “glob” of work, then it can be executed by at most one CPU at a
time, which is by definition sequential execution. However, partitioning
the work requires great care. For example, uneven partitioning can result
in sequential execution once the small partitions have completed [Amd67].
In less extreme cases, load balancing can be used to fully utilize available
hardware and restore performance and scalability.
v2022.09.25a

29

Although partitioning can greatly improve performance and scalability,
it can also increase complexity. For example, partitioning can complicate
handling of global errors and events: A parallel program may need to carry
out non-trivial synchronization in order to safely process such global events.
More generally, each partition requires some sort of communication: After
all, if a given thread did not communicate at all, it would have no effect and
would thus not need to be executed. However, because communication incurs
overhead, careless partitioning choices can result in severe performance
degradation.

Furthermore, the number of concurrent threads must often be controlled,
as each such thread occupies common resources, for example, space in
CPU caches. If too many threads are permitted to execute concurrently,
the CPU caches will overflow, resulting in high cache miss rate, which in
turn degrades performance. Conversely, large numbers of threads are often
required to overlap computation and I/O so as to fully utilize I/O devices.

Quick Quiz 2.14: Other than CPU cache capacity, what might require limiting
the number of concurrent threads? H

Finally, permitting threads to execute concurrently greatly increases the
program’s state space, which can make the program difficult to understand
and debug, degrading productivity. All else being equal, smaller state
spaces having more regular structure are more easily understood, but this
is a human-factors statement as much as it is a technical or mathematical
statement. Good parallel designs might have extremely large state spaces,
but nevertheless be easy to understand due to their regular structure, while
poor designs can be impenetrable despite having a comparatively small state
space. The best designs exploit embarrassing parallelism, or transform the
problem to one having an embarrassingly parallel solution. In either case,
“embarrassingly parallel” is in fact an embarrassment of riches. The current
state of the art enumerates good designs; more work is required to make
more general judgments on state-space size and structure.

2.4.2 Parallel Access Control

Given a single-threaded sequential program, that single thread has full
access to all of the program’s resources. These resources are most often

30

in-memory data structures, but can be CPUs, memory (including caches),
I/0 devices, computational accelerators, files, and much else besides.

The first parallel-access-control issue is whether the form of access
to a given resource depends on that resource’s location. For example,
in many message-passing environments, local-variable access is via ex-
pressions and assignments, while remote-variable access uses an entirely
different syntax, usually involving messaging. The POSIX Threads environ-
ment [Ope97], Structured Query Language (SQL) [Int92], and partitioned
global address-space (PGAS) environments such as Universal Parallel C
(UPC) [EGCDO03, CBF13] offer implicit access, while Message Passing
Interface (MPI) [MPIOS8] offers explicit access because access to remote
data requires explicit messaging.

The other parallel-access-control issue is how threads coordinate access
to the resources. This coordination is carried out by the very large number
of synchronization mechanisms provided by various parallel languages and
environments, including message passing, locking, transactions, reference
counting, explicit timing, shared atomic variables, and data ownership.
Many traditional parallel-programming concerns such as deadlock, livelock,
and transaction rollback stem from this coordination. This framework can be
elaborated to include comparisons of these synchronization mechanisms, for
example locking vs. transactional memory [MMWO07], but such elaboration
is beyond the scope of this section. (See Sections 17.2 and 17.3 for more
information on transactional memory.)

[Quick Quiz 2.15: Just what is “explicit timing”??? H]

2.4.3 Resource Partitioning and Replication

The most effective parallel algorithms and systems exploit resource parallel-
ism, so much so that it is usually wise to begin parallelization by partitioning
your write-intensive resources and replicating frequently accessed read-
mostly resources. The resource in question is most frequently data, which
might be partitioned over computer systems, mass-storage devices, NUMA
nodes, CPU cores (or dies or hardware threads), pages, cache lines, instances

31

of synchronization primitives, or critical sections of code. For example,
partitioning over locking primitives is termed “data locking” [BK85].

Resource partitioning is frequently application dependent. For example,
numerical applications frequently partition matrices by row, column, or sub-
matrix, while commercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures. Thus, a commercial
application might assign the data for a given customer to a given few
computers out of a large cluster. An application might statically partition
data, or dynamically change the partitioning over time.

Resource partitioning is extremely effective, but it can be quite challenging
for complex multilinked data structures.

2.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the operating system, the
compiler, libraries, or other software-environment infrastructure. However,
developers working with novel hardware features and components will often
need to work directly with such hardware. In addition, direct access to the
hardware can be required when squeezing the last drop of performance out
of a given system. In this case, the developer may need to tailor or configure
the application to the cache geometry, system topology, or interconnect
protocol of the target hardware.

In some cases, hardware may be considered to be a resource which
is subject to partitioning or access control, as described in the previous
sections.

2.4.5 Composite Capabilities

Although these four capabilities are fundamental, good engineering practice
uses composites of these capabilities. For example, the data-parallel
approach first partitions the data so as to minimize the need for inter-
partition communication, partitions the code accordingly, and finally maps
data partitions and threads so as to maximize throughput while minimizing
inter-thread communication, as shown in Figure 2.6. The developer can then
consider each partition separately, greatly reducing the size of the relevant

4 N

Performance Productivity
r—*

Generality

AN J

Figure 2.6: Ordering of Parallel-Programming Tasks

state space, in turn increasing productivity. Even though some problems are
non-partitionable, clever transformations into forms permitting partitioning
can sometimes greatly enhance both performance and scalability [Met99].

2.4.6 How Do Languages and Environments Assist With
These Tasks?

Although many environments require the developer to deal manually with
these tasks, there are long-standing environments that bring significant
automation to bear. The poster child for these environments is SQL, many
implementations of which automatically parallelize single large queries and
also automate concurrent execution of independent queries and updates.

These four categories of tasks must be carried out in all parallel programs,
but that of course does not necessarily mean that the developer must manually
carry out these tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become cheaper and more
readily available.

[Quick Quiz 2.16: Are there any other obstacles to parallel programming?]

v2022.09.25ba

2.5 Discussion

Until you try, you don’t know what you can’t do.

Henry James

This section has given an overview of the difficulties with, goals of, and
alternatives to parallel programming. This overview was followed by a
discussion of what can make parallel programming hard, along with a high-
level approach for dealing with parallel programming’s difficulties. Those
who still insist that parallel programming is impossibly difficult should review
some of the older guides to parallel programmming [Seq88, Bir89, BK85,
Inm85]. The following quote from Andrew Birrell’s monograph [Bir89] is
especially telling:

Writing concurrent programs has a reputation for being exotic and
difficult. I believe it is neither. You need a system that provides
you with good primitives and suitable libraries, you need a basic
caution and carefulness, you need an armory of useful techniques,
and you need to know of the common pitfalls. I hope that this
paper has helped you towards sharing my belief.

The authors of these older guides were well up to the parallel programming
challenge back in the 1980s. As such, there are simply no excuses for refusing
to step up to the parallel-programming challenge here in the 21 century!

We are now ready to proceed to the next chapter, which dives into the
relevant properties of the parallel hardware underlying our parallel software.

Chapter 3
Hardware and its Habits

Premature abstraction is the root of all evil.

A cast of thousands

Most people intuitively understand that passing messages between systems
is more expensive than performing simple calculations within the confines
of a single system. But it is also the case that communicating among threads
within the confines of a single shared-memory system can also be quite
expensive. This chapter therefore looks at the cost of synchronization and
communication within a shared-memory system. These few pages can do no
more than scratch the surface of shared-memory parallel hardware design;
readers desiring more detail would do well to start with a recent edition of
Hennessy’s and Patterson’s classic text [HP17, HP95].

Quick Quiz 3.1: Why should parallel programmers bother learning low-level
properties of the hardware? Wouldn'’t it be easier, better, and more elegant to
remain at a higher level of abstraction? H

3.1 Overview

Mechanical Sympathy: Hardware and software
working together in harmony.

Martin Thompson

Careless reading of computer-system specification sheets might lead one to
believe that CPU performance is a footrace on a clear track, as illustrated in
Figure 3.1, where the race always goes to the swiftest.

Figure 3.1: CPU Performance at its Best

Although there are a few CPU-bound benchmarks that approach the ideal
case shown in Figure 3.1, the typical program more closely resembles an
obstacle course than a race track. This is because the internal architecture
of CPUs has changed dramatically over the past few decades, courtesy of
Moore’s Law. These changes are described in the following sections.

3.1.1 Pipelined CPUs

In the 1980s, the typical microprocessor fetched an instruction, decoded it,
and executed it, typically taking at least three clock cycles to complete one
instruction before even starting the next. In contrast, the CPU of the late
1990s and of the 2000s execute many instructions simultaneously, using
pipelines; superscalar techniques; out-of-order instruction and data han-
dling; speculative execution, and more [HP17, HP11] in order to optimize
the flow of instructions and data through the CPU. Some cores have more
than one hardware thread, which is variously called simultaneous multi-
threading (SMT) or hyperthreading (HT) [Fen73], each of which appears as

4,0 GHz clock, 20 M& L3
cache, 20 stage pipeline...

The only pipeline | need
is to cool of f that hot-
headed brat.

Figure 3.2: CPUs Old and New

an independent CPU to software, at least from a functional viewpoint. These
modern hardware features can greatly improve performance, as illustrated
by Figure 3.2.

Achieving full performance with a CPU having a long pipeline requires
highly predictable control flow through the program. Suitable control
flow can be provided by a program that executes primarily in tight loops,
for example, arithmetic on large matrices or vectors. The CPU can then
correctly predict that the branch at the end of the loop will be taken in almost
all cases, allowing the pipeline to be kept full and the CPU to execute at full
speed.

However, branch prediction is not always so easy. For example, consider a
program with many loops, each of which iterates a small but random number
of times. For another example, consider an old-school object-oriented
program with many virtual objects that can reference many different real
objects, all with different implementations for frequently invoked member
functions, resulting in many calls through pointers. In these cases, it is
difficult or even impossible for the CPU to predict where the next branch
might lead. Then either the CPU must stall waiting for execution to
proceed far enough to be certain where that branch leads, or it must guess
and then proceed using speculative execution. Although guessing works

Figure 3.3: CPU Meets a Pipeline Flush

extremely well for programs with predictable control flow, for unpredictable
branches (such as those in binary search) the guesses will frequently be
wrong. A wrong guess can be expensive because the CPU must discard
any speculatively executed instructions following the corresponding branch,
resulting in a pipeline flush. If pipeline flushes appear too frequently, they
drastically reduce overall performance, as fancifully depicted in Figure 3.3.

This gets even worse in the increasingly common case of hyperthreading
(or SMT, if you prefer), especially on pipelined superscalar out-of-order
CPU featuring speculative execution. In this increasingly common case,
all the hardware threads sharing a core also share that core’s resources,
including registers, cache, execution units, and so on. The instructions
are often decoded into micro-operations, and use of the shared execution
units and the hundreds of hardware registers is often coordinated by a
micro-operation scheduler. A rough diagram of such a two-threaded core is
shown in Figure 3.4, and more accurate (and thus more complex) diagrams

Thread 0 Thread 1
Instructions Instructions

Decode and
Translate

Micro-Op
Scheduler

Registers
(100s!)

Execution
Units

Figure 3.4: Rough View of Modern Micro-Architecture

are available in textbooks and scholarly papers.! Therefore, the execution
of one hardware thread can and often is perturbed by the actions of other
hardware threads sharing that core.

Even if only one hardware thread is active (for example, in old-school
CPU designs where there is only one thread), counterintuitive results are
quite common. Execution units often have overlapping capabilities, so that a
CPU’s choice of execution unit can result in pipeline stalls due to contention
for that execution unit from later instructions. In theory, this contention is
avoidable, but in practice CPUs must choose very quickly and without the
benefit of clairvoyance. In particular, adding an instruction to a tight loop
can sometimes actually cause execution to speed up.

Unfortunately, pipeline flushes and shared-resource contention are not
the only hazards in the obstacle course that modern CPUs must run. The
next section covers the hazards of referencing memory.

! Here is one example for a late-2010s Intel core: https://en.wikichip.org/wiki/
intel/microarchitectures/skylake_(server).

https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)

39
3.1.2 Memory References

In the 1980s, it often took less time for a microprocessor to load a value from
memory than it did to execute an instruction. More recently, microprocessors
might execute hundreds or even thousands of instructions in the time required
to access memory. This disparity is due to the fact that Moore’s Law has
increased CPU performance at a much greater rate than it has decreased
memory latency, in part due to the rate at which memory sizes have grown.
For example, a typical 1970s minicomputer might have 4 KB (yes, kilobytes,
not megabytes, let alone gigabytes or terabytes) of main memory, with
single-cycle access.” Present-day CPU designers still can construct a 4 KB
memory with single-cycle access, even on systems with multi-GHz clock
frequencies. And in fact they frequently do construct such memories, but
they now call them “level-0 caches”, plus they can be quite a bit bigger than
4KB.

Although the large caches found on modern microprocessors can do
quite a bit to help combat memory-access latencies, these caches require
highly predictable data-access patterns to successfully hide those latencies.
Unfortunately, common operations such as traversing a linked list have
extremely unpredictable memory-access patterns—after all, if the pattern
was predictable, us software types would not bother with the pointers, right?
Therefore, as shown in Figure 3.5, memory references often pose severe
obstacles to modern CPUs.

Thus far, we have only been considering obstacles that can arise during a
given CPU’s execution of single-threaded code. Multi-threading presents
additional obstacles to the CPU, as described in the following sections.

3.1.3 Atomic Operations

One such obstacle is atomic operations. The problem here is that the whole
idea of an atomic operation conflicts with the piece-at-a-time assembly-line
operation of a CPU pipeline. To hardware designers’ credit, modern CPUs
use a number of extremely clever tricks to make such operations look
atomic even though they are in fact being executed piece-at-a-time, with

2 Tt is only fair to add that each of these single cycles lasted no less than 1.6 microseconds.

Figure 3.5: CPU Meets a Memory Reference

one common trick being to identify all the cachelines containing the data
to be atomically operated on, ensure that these cachelines are owned by
the CPU executing the atomic operation, and only then proceed with the
atomic operation while ensuring that these cachelines remained owned by
this CPU. Because all the data is private to this CPU, other CPUs are unable
to interfere with the atomic operation despite the piece-at-a-time nature
of the CPU’s pipeline. Needless to say, this sort of trick can require that
the pipeline must be delayed or even flushed in order to perform the setup
operations that permit a given atomic operation to complete correctly.

In contrast, when executing a non-atomic operation, the CPU can load
values from cachelines as they appear and place the results in the store buffer,
without the need to wait for cacheline ownership. Although there are a

41

Figure 3.6: CPU Meets an Atomic Operation

number of hardware optimizations that can sometimes hide cache latencies,
the resulting effect on performance is all too often as depicted in Figure 3.6.

Unfortunately, atomic operations usually apply only to single elements of
data. Because many parallel algorithms require that ordering constraints be
maintained between updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as performance-sapping
obstacles, as described in the next section.

Quick Quiz 3.2: What types of machines would allow atomic operations on
multiple data elements? Ml

3.1.4 Memory Barriers

Memory barriers will be considered in more detail in Chapter 15 and
Appendix C. In the meantime, consider the following simple lock-based
critical section:

spin_lock(&mylock) ;
a=a+1;
spin_unlock(&mylock) ;

W

Figure 3.7: CPU Meets a Memory Barrier

If the CPU were not constrained to execute these statements in the order
shown, the effect would be that the variable “a” would be incremented
without the protection of “mylock”, which would certainly defeat the purpose
of acquiring it. To prevent such destructive reordering, locking primitives
contain either explicit or implicit memory barriers. Because the whole
purpose of these memory barriers is to prevent reorderings that the CPU
would otherwise undertake in order to increase performance, memory
barriers almost always reduce performance, as depicted in Figure 3.7.

As with atomic operations, CPU designers have been working hard to
reduce memory-barrier overhead, and have made substantial progress.

CACHE-
MISS

TOLL
BOOTH

Figure 3.8: CPU Meets a Cache Miss

3.1.5 Cache Misses

An additional multi-threading obstacle to CPU performance is the “cache
miss”. As noted earlier, modern CPUs sport large caches in order to reduce
the performance penalty that would otherwise be incurred due to high
memory latencies. However, these caches are actually counter-productive
for variables that are frequently shared among CPUs. This is because when a
given CPU wishes to modify the variable, it is most likely the case that some
other CPU has modified it recently. In this case, the variable will be in that
other CPU’s cache, but not in this CPU’s cache, which will therefore incur
an expensive cache miss (see Appendix C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as shown in Figure 3.8.

Quick Quiz 3.3: So have CPU designers also greatly reduced the overhead of
cache misses? W

44

Please stay on the
line. Your call is very
important to us...

Figure 3.9: CPU Waits for I/O Completion

3.1.6 1/0 Operations

A cache miss can be thought of as a CPU-to-CPU I/O operation, and as such
is one of the cheapest I/O operations available. I/O operations involving
networking, mass storage, or (worse yet) human beings pose much greater
obstacles than the internal obstacles called out in the prior sections, as
illustrated by Figure 3.9.

This is one of the differences between shared-memory and distributed-
system parallelism: Shared-memory parallel programs must normally deal
with no obstacle worse than a cache miss, while a distributed parallel program
will typically incur the larger network communication latencies. In both
cases, the relevant latencies can be thought of as a cost of communication—a
cost that would be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the actual work being
performed is a key design parameter. A major goal of parallel hardware
design is to reduce this ratio as needed to achieve the relevant performance
and scalability goals. In turn, as will be seen in Chapter 6, a major goal of

45

parallel software design is to reduce the frequency of expensive operations
like communications cache misses.

Of course, it is one thing to say that a given operation is an obstacle,
and quite another to show that the operation is a significant obstacle. This
distinction is discussed in the following sections.

3.2 Overheads

Don’t design bridges in ignorance of materials, and
don’t design low-level software in ignorance of the
underlying hardware.

Unknown

This section presents actual overheads of the obstacles to performance listed
out in the previous section. However, it is first necessary to get a rough view
of hardware system architecture, which is the subject of the next section.

3.2.1 Hardware System Architecture

Figure 3.10 shows a rough schematic of an eight-core computer system. Each
die has a pair of CPU cores, each with its cache, as well as an interconnect
allowing the pair of CPUs to communicate with each other. The system
interconnect allows the four dies to communicate with each other and with
main memory.

Data moves through this system in units of “cache lines”, which are
power-of-two fixed-size aligned blocks of memory, usually ranging from 32
to 256 bytes in size. When a CPU loads a variable from memory to one
of its registers, it must first load the cacheline containing that variable into
its cache. Similarly, when a CPU stores a value from one of its registers
into memory, it must also load the cacheline containing that variable into its
cache, but must also ensure that no other CPU has a copy of that cacheline.

For example, if CPU 0 were to write to a variable whose cacheline resided
in CPU 7’s cache, the following over-simplified sequence of events might
ensue:

46

CPUO CPU 1 CPU 2 CPU3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory @’ System Interconnect @ Memory

Z= X
Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPU5 CPU6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

Figure 3.10: System Hardware Architecture

. CPU 0 checks its local cache, and does not find the cacheline. It
therefore records the write in its store buffer.

. Arequest for this cacheline is forwarded to CPU 0’s and 1’s interconnect,
which checks CPU 1°s local cache, and does not find the cacheline.

. This request is forwarded to the system interconnect, which checks
with the other three dies, learning that the cacheline is held by the die
containing CPU 6 and 7.

. This request is forwarded to CPU 6’s and 7’s interconnect, which
checks both CPUs’ caches, finding the value in CPU 7’s cache.

. CPU 7 forwards the cacheline to its interconnect, and also flushes the
cacheline from its cache.

. CPU 6’s and 7’s interconnect forwards the cacheline to the system
interconnect.

47
7. The system interconnect forwards the cacheline to CPU 0’s and 1’s
interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline to CPU 0’s cache.

9. CPU 0 can now complete the write, updating the relevant portions of
the newly arrived cacheline from the value previously recorded in the
store buffer.

Quick Quiz 3.4: This is a simplified sequence of events? How could it possibly
be any more complex? W

‘ Quick Quiz 3.5: Why is it necessary to flush the cacheline from CPU 7’s cache?
|

This simplified sequence is just the beginning of a discipline called cache-
coherency protocols [HP95, CSG99, MHS 12, SHW 1], which is discussed
in more detail in Appendix C. As can be seen in the sequence of events
triggered by a CAS operation, a single instruction can cause considerable
protocol traffic, which can significantly degrade your parallel program’s
performance.

Fortunately, if a given variable is being frequently read during a time
interval during which it is never updated, that variable can be replicated
across all CPUs’ caches. This replication permits all CPUs to enjoy extremely
fast access to this read-mostly variable. Chapter 9 presents synchronization
mechanisms that take full advantage of this important hardware read-mostly
optimization.

3.2.2 Costs of Operations

The overheads of some common operations important to parallel programs
are displayed in Table 3.1. This system’s clock period rounds to 0.5 ns.
Although it is not unusual for modern microprocessors to be able to retire
multiple instructions per clock period, the operations’ costs are nevertheless
normalized to a clock period in the third column, labeled “Ratio”. The first
thing to note about this table is the large values of many of the ratios.

48

Table 3.1: CPU 0 View of Synchronization Mechanisms on 8-Socket
System With Intel Xeon Platinum 8176 CPUs @ 2.10 GHz

Ratio
Operation Cost (ns) (cost/clock) CPUs
Clock period 0.5 1.0
Same-CPU CAS 7.0 14.6 0
Same-CPU lock 15.4 32.3 0
In-core blind CAS 7.2 15.2 224
In-core CAS 18.0 37.7 224
Off-core blind CAS 47.5 99.8 1-27,225-251
Off-core CAS 101.9 214.0 1-27,225-251
Off-socket blind CAS 148.8 312.5 28-111,252-335
Off-socket CAS 442.9 930.1 28-111,252-335
Cross-interconnect blind CAS 336.6 706.8 112-223,336-447
Cross-interconnect CAS 944.8 1,984.2 112-223,336-447
Off-System
Comms Fabric 5,000 10,500
Global Comms 195,000,000 409,500,000

The same-CPU compare-and-swap (CAS) operation consumes about
seven nanoseconds, a duration more than ten times that of the clock period.
CAS is an atomic operation in which the hardware compares the contents
of the specified memory location to a specified “old” value, and if they
compare equal, stores a specified “new” value, in which case the CAS
operation succeeds. If they compare unequal, the memory location keeps its
(unexpected) value, and the CAS operation fails. The operation is atomic in
that the hardware guarantees that the memory location will not be changed
between the compare and the store. CAS functionality is provided by the
lock; cmpxchg instruction on x86.

The “same-CPU” prefix means that the CPU now performing the CAS
operation on a given variable was also the last CPU to access this variable,
so that the corresponding cacheline is already held in that CPU’s cache.
Similarly, the same-CPU lock operation (a “round trip” pair consisting of a
lock acquisition and release) consumes more than fifteen nanoseconds, or
more than thirty clock cycles. The lock operation is more expensive than

49

CAS because it requires two atomic operations on the lock data structure,
one for acquisition and the other for release.

In-core operations involving interactions between the hardware threads
sharing a single core are about the same cost as same-CPU operations. This
should not be too surprising, given that these two hardware threads also
share the full cache hierarchy.

In the case of the blind CAS, the software specifies the old value without
looking at the memory location. This approach is appropriate when
attempting to acquire a lock. If the unlocked state is represented by zero
and the locked state is represented by the value one, then a CAS operation
on the lock that specifies zero for the old value and one for the new value
will acquire the lock if it is not already held. The key point is that there is
only one access to the memory location, namely the CAS operation itself.

In contrast, a normal CAS operation’s old value is derived from some
earlier load. For example, to implement an atomic increment, the current
value of that location is loaded and that value is incremented to produce the
new value. Then in the CAS operation, the value actually loaded would be
specified as the old value and the incremented value as the new value. If
the value had not been changed between the load and the CAS, this would
increment the memory location. However, if the value had in fact changed,
then the old value would not match, causing a miscompare that would
result in the CAS operation failing. The key point is that there are now two
accesses to the memory location, the load and the CAS.

Thus, it is not surprising that in-core blind CAS consumes only about
seven nanoseconds, while in-core CAS consumes about 18 nanoseconds.
The non-blind case’s extra load does not come for free. That said, the
overhead of these operations are similar to single-CPU CAS and lock,
respectively.

Quick Quiz 3.6: Table 3.1 shows CPU 0 sharing a core with CPU 224. Shouldn’t
that instead be CPU 1??? W

A blind CAS involving CPUs in different cores but on the same socket
consumes almost fifty nanoseconds, or almost one hundred clock cycles.
The code used for this cache-miss measurement passes the cache line back
and forth between a pair of CPUs, so this cache miss is satisfied not from

50
Table 3.2: Cache Geometry for 8-Socket System With Intel Xeon Platinum
8176 CPUs @ 2.10 GHz

Level Scope Line Size Sets Ways Size
LO Core 64 64 8 32K
L1 Core 64 64 8 32K
L2 Core 64 1024 16 1024K
L3 Socket 64 57,344 11 39,424K

memory, but rather from the other CPU’s cache. A non-blind CAS operation,
which as noted earlier must look at the old value of the variable as well as
store a new value, consumes over one hundred nanoseconds, or more than
two hundred clock cycles. Think about this a bit. In the time required to do
one CAS operation, the CPU could have executed more than two hundred
normal instructions. This should demonstrate the limitations not only of
fine-grained locking, but of any other synchronization mechanism relying
on fine-grained global agreement.

If the pair of CPUs are on different sockets, the operations are considerably
more expensive. A blind CAS operation consumes almost 150 nanoseconds,
or more than three hundred clock cycles. A normal CAS operation consumes
more than 400 nanoseconds, or almost one thousand clock cycles.

Worse yet, not all pairs of sockets are created equal. This particular
system appears to be constructed as a pair of four-socket components, with
additional latency penalties when the CPUs reside in different components.
In this case, a blind CAS operation consumes more than three hundred
nanoseconds, or more than seven hundred clock cycles. A CAS operation
consumes almost a full microsecond, or almost two thousand clock cycles.

Quick Quiz 3.7: Surely the hardware designers could be persuaded to improve
this situation! Why have they been content with such abysmal performance for
these single-instruction operations? Wl

Unfortunately, the high speed of within-core and within-socket communi-
cation does not come for free. First, there are only two CPUs within a given
core and only 56 within a given socket, compared to 448 across the system.

51

Second, as shown in Table 3.2, the in-core caches are quite small compared
to the in-socket caches, which are in turn quite small compared to the 1.4 TB
of memory configured on this system. Third, again referring to the figure,
the caches are organized as a hardware hash table with a limited number
of items per bucket. For example, the raw size of the L3 cache (“Size”) is
almost 40 MB, but each bucket (“Line”) can only hold 11 blocks of memory
(“Ways”), each of which can be at most 64 bytes (“Line Size”). This means
that only 12 bytes of memory (admittedly at carefully chosen addresses) are
required to overflow this 40 MB cache. On the other hand, equally careful
choice of addresses might make good use of the entire 40 MB.

Spatial locality of reference is clearly extremely important, as is spreading
the data across memory.

I/O operations are even more expensive. As shown in the “Comms
Fabric” row, high performance (and expensive!) communications fabric,
such as InfiniBand or any number of proprietary interconnects, has a la-
tency of roughly five microseconds for an end-to-end round trip, during
which time more than ten thousand instructions might have been executed.
Standards-based communications networks often require some sort of proto-
col processing, which further increases the latency. Of course, geographic
distance also increases latency, with the speed-of-light through optical fiber
latency around the world coming to roughly 195 milliseconds, or more than
400 million clock cycles, as shown in the “Global Comms” row.

Quick Quiz 3.8: These numbers are insanely large! How can I possibly get my
head around them? W

3.2.3 Hardware Optimizations

It is only natural to ask how the hardware is helping, and the answer is
“Quite a bit!”

One hardware optimization is large cachelines. This can provide a
big performance boost, especially when software is accessing memory
sequentially. For example, given a 64-byte cacheline and software accessing
64-bit variables, the first access will still be slow due to speed-of-light delays
(if nothing else), but the remaining seven can be quite fast. However, this
optimization has a dark side, namely false sharing, which happens when

52

different variables in the same cacheline are being updated by different
CPUs, resulting in a high cache-miss rate. Software can use the alignment
directives available in many compilers to avoid false sharing, and adding
such directives is a common step in tuning parallel software.

A second related hardware optimization is cache prefetching, in which
the hardware reacts to consecutive accesses by prefetching subsequent
cachelines, thereby evading speed-of-light delays for these subsequent
cachelines. Of course, the hardware must use simple heuristics to determine
when to prefetch, and these heuristics can be fooled by the complex data-
access patterns in many applications. Fortunately, some CPU families
allow for this by providing special prefetch instructions. Unfortunately, the
effectiveness of these instructions in the general case is subject to some
dispute.

A third hardware optimization is the store buffer, which allows a string
of store instructions to execute quickly even when the stores are to non-
consecutive addresses and when none of the needed cachelines are present in
the CPU’s cache. The dark side of this optimization is memory misordering,
for which see Chapter 15.

A fourth hardware optimization is speculative execution, which can allow
the hardware to make good use of the store buffers without resulting in
memory misordering. The dark side of this optimization can be energy
inefficiency and lowered performance if the speculative execution goes awry
and must be rolled back and retried. Worse yet, the advent of Spectre and
Meltdown [Hor18] made it apparent that hardware speculation can also
enable side-channel attacks that defeat memory-protection hardware so as
to allow unprivileged processes to read memory that they should not have
access to. It is clear that the combination of speculative execution and cloud
computing needs more than a bit of rework!

A fifth hardware optimization is large caches, allowing individual CPUs
to operate on larger datasets without incurring expensive cache misses.
Although large caches can degrade energy efficiency and cache-miss latency,
the ever-growing cache sizes on production microprocessors attests to the
power of this optimization.

A final hardware optimization is read-mostly replication, in which data
that is frequently read but rarely updated is present in all CPUs’ caches.

Figure 3.11: Hardware and Software: On Same Side

This optimization allows the read-mostly data to be accessed exceedingly
efficiently, and is the subject of Chapter 9.

In short, hardware and software engineers are really on the same side,
with both trying to make computers go fast despite the best efforts of the laws
of physics, as fancifully depicted in Figure 3.11 where our data stream is
trying its best to exceed the speed of light. The next section discusses some
additional things that the hardware engineers might (or might not) be able to
do, depending on how well recent research translates to practice. Software’s
contribution to this noble goal is outlined in the remaining chapters of this
book.

3.3 Hardware Free Lunch?

The great trouble today is that there are too many
people looking for someone else to do something for
them. The solution to most of our troubles is to be
found in everyone doing something for themselves.

Henry Ford, updated

The major reason that concurrency has been receiving so much focus over
the past few years is the end of Moore’s-Law induced single-threaded
performance increases (or “free lunch” [Sut08]), as shown in Figure 2.1 on
page 17. This section briefly surveys a few ways that hardware designers
might bring back the “free lunch”.

However, the preceding section presented some substantial hardware
obstacles to exploiting concurrency. One severe physical limitation that
hardware designers face is the finite speed of light. As noted in Figure 3.10
on page 46, light can manage only about an 8-centimeters round trip in
a vacuum during the duration of a 1.8 GHz clock period. This distance
drops to about 3 centimeters for a 5 GHz clock. Both of these distances are
relatively small compared to the size of a modern computer system.

To make matters even worse, electric waves in silicon move from three to
thirty times more slowly than does light in a vacuum, and common clocked
logic constructs run still more slowly, for example, a memory reference may
need to wait for a local cache lookup to complete before the request may
be passed on to the rest of the system. Furthermore, relatively low speed
and high power drivers are required to move electrical signals from one
silicon die to another, for example, to communicate between a CPU and
main memory.

Quick Quiz 3.9: Butindividual electrons don’t move anywhere near that fast, even
in conductors!!! The electron drift velocity in a conductor under semiconductor
voltage levels is on the order of only one millimeter per second. What gives??? W

There are nevertheless some technologies (both hardware and software)
that might help improve matters:

70 ur\nZ\

| | [=—=]

3cm 1.5¢cm

Figure 3.12: Latency Benefit of 3D Integration

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electricity,
4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sections.

3.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding very thin silicon
dies to each other in a vertical stack. This practice provides potential
benefits, but also poses significant fabrication challenges [Kni08].

Perhaps the most important benefit of 3DI is decreased path length
through the system, as shown in Figure 3.12. A 3-centimeter silicon die
is replaced with a stack of four 1.5-centimeter dies, in theory decreasing
the maximum path through the system by a factor of two, keeping in mind
that each layer is quite thin. In addition, given proper attention to design
and placement, long horizontal electrical connections (which are both slow
and power hungry) can be replaced by short vertical electrical connections,
which are both faster and more power efficient.

56

However, delays due to levels of clocked logic will not be decreased by 3D
integration, and significant manufacturing, testing, power-supply, and heat-
dissipation problems must be solved for 3D integration to reach production
while still delivering on its promise. The heat-dissipation problems might be
solved using semiconductors based on diamond, which is a good conductor
for heat, but an electrical insulator. That said, it remains difficult to grow
large single diamond crystals, to say nothing of slicing them into wafers.
In addition, it seems unlikely that any of these technologies will be able
to deliver the exponential increases to which some people have become
accustomed. That said, they may be necessary steps on the path to the late
Jim Gray’s “smoking hairy golf balls” [Gra02].

3.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconductor manufacturers
have but two fundamental problems: (1) The finite speed of light and
(2) The atomic nature of matter [Gar07]. It is possible that semiconductor
manufacturers are approaching these limits, but there are nevertheless a
few avenues of research and development focused on working around these
fundamental limits.

One workaround for the atomic nature of matter are so-called “high-K
dielectric” materials, which allow larger devices to mimic the electrical
properties of infeasibly small devices. These materials pose some severe
fabrication challenges, but nevertheless may help push the frontiers out a
bit farther. Another more-exotic workaround stores multiple bits in a single
electron, relying on the fact that a given electron can exist at a number of
energy levels. It remains to be seen if this particular approach can be made
to work reliably in production semiconductor devices.

Another proposed workaround is the “quantum dot” approach that allows
much smaller device sizes, but which is still in the research stage.

One challenge is that many recent hardware-device-level breakthroughs
require very tight control of which atoms are placed where [Kell7]. It
therefore seems likely that whoever finds a good way to hand-place atoms
on each of the billions of devices on a chip will have most excellent bragging
rights, if nothing else!

57
3.3.3 Light, Not Electrons

Although the speed of light would be a hard limit, the fact is that semicon-
ductor devices are limited by the speed of electricity rather than that of light,
given that electric waves in semiconductor materials move at between 3 %
and 30 % of the speed of light in a vacuum. The use of copper connections on
silicon devices is one way to increase the speed of electricity, and it is quite
possible that additional advances will push closer still to the actual speed
of light. In addition, there have been some experiments with tiny optical
fibers as interconnects within and between chips, based on the fact that the
speed of light in glass is more than 60 % of the speed of light in a vacuum.
One obstacle to such optical fibers is the inefficiency conversion between
electricity and light and vice versa, resulting in both power-consumption
and heat-dissipation problems.

That said, absent some fundamental advances in the field of physics, any
exponential increases in the speed of data flow will be sharply limited by
the actual speed of light in a vacuum.

3.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem is often spending
significant time and energy doing work that is only tangentially related
to the problem at hand. For example, when taking the dot product of a
pair of vectors, a general-purpose CPU will normally use a loop (possibly
unrolled) with a loop counter. Decoding the instructions, incrementing
the loop counter, testing this counter, and branching back to the top of the
loop are in some sense wasted effort: The real goal is instead to multiply
corresponding elements of the two vectors. Therefore, a specialized piece
of hardware designed specifically to multiply vectors could get the job done
more quickly and with less energy consumed.

This is in fact the motivation for the vector instructions present in many
commodity microprocessors. Because these instructions operate on multiple
data items simultaneously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently encrypt and decrypt,
compress and decompress, encode and decode, and many other tasks besides.

58

Unfortunately, this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more transistors, which
will consume some power even when not in use. Software must be modified
to take advantage of this specialized hardware, and this specialized hardware
must be sufficiently generally useful that the high up-front hardware-design
costs can be spread over enough users to make the specialized hardware
affordable. In part due to these sorts of economic considerations, specialized
hardware has thus far appeared only for a few application areas, including
graphics processing (GPUs), vector processors (MMX, SSE, and VMX
instructions), and, to a lesser extent, encryption. And even in these areas, it
is not always easy to realize the expected performance gains, for example,
due to thermal throttling [Kral7, Lem18, Dow?20].

Unlike the server and PC arena, smartphones have long used a wide
variety of hardware accelerators. These hardware accelerators are often
used for media decoding, so much so that a high-end MP3 player might
be able to play audio for several minutes—with its CPU fully powered off
the entire time. The purpose of these accelerators is to improve energy
efficiency and thus extend battery life: Special purpose hardware can often
compute more efficiently than can a general-purpose CPU. This is another
example of the principle called out in Section 2.2.3: Generality is almost
never free.

Nevertheless, given the end of Moore’s-Law-induced single-threaded
performance increases, it seems safe to assume that increasing varieties of
special-purpose hardware will appear.

3.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the computing industry by
surprise, the fact remains that shared-memory parallel computer systems
have been commercially available for more than a quarter century. This is
more than enough time for significant parallel software to make its appear-
ance, and it indeed has. Parallel operating systems are quite commonplace,
as are parallel threading libraries, parallel relational database management
systems, and parallel numerical software. Use of existing parallel software

59

can go a long ways towards solving any parallel-software crisis we might
encounter.

Perhaps the most common example is the parallel relational database
management system. It is not unusual for single-threaded programs, often
written in high-level scripting languages, to access a central relational
database concurrently. In the resulting highly parallel system, only the
database need actually deal directly with parallelism. A very nice trick
when it works!

3.4 Software Design Implications

One ship drives east and another west
While the self-same breezes blow;
*Tis the set of the sail and not the gail
That bids them where to go.

Ella Wheeler Wilcox

The values of the ratios in Table 3.1 are critically important, as they limit
the efficiency of a given parallel application. To see this, suppose that the
parallel application uses CAS operations to communicate among threads.
These CAS operations will typically involve a cache miss, that is, assuming
that the threads are communicating primarily with each other rather than
with themselves. Suppose further that the unit of work corresponding to
each CAS communication operation takes 300 ns, which is sufficient time to
compute several floating-point transcendental functions. Then about half of
the execution time will be consumed by the CAS communication operations!
This in turn means that a two-CPU system running such a parallel program
would run no faster than a sequential implementation running on a single
CPU.

The situation is even worse in the distributed-system case, where the
latency of a single communications operation might take as long as thousands
or even millions of floating-point operations. This illustrates how important
it is for communications operations to be extremely infrequent and to enable
very large quantities of processing.

60

Quick Quiz 3.10: Given that distributed-systems communication is so horribly
expensive, why does anyone bother with such systems? H

The lesson should be quite clear: Parallel algorithms must be explicitly
designed with these hardware properties firmly in mind. One approach
is to run nearly independent threads. The less frequently the threads
communicate, whether by atomic operations, locks, or explicit messages, the
better the application’s performance and scalability will be. This approach
will be touched on in Chapter 5, explored in Chapter 6, and taken to its
logical extreme in Chapter 8.

Another approach is to make sure that any sharing be read-mostly, which
allows the CPUs’ caches to replicate the read-mostly data, in turn allowing
all CPUs fast access. This approach is touched on in Section 5.2.4, and
explored more deeply in Chapter 9.

In short, achieving excellent parallel performance and scalability means
striving for embarrassingly parallel algorithms and implementations,
whether by careful choice of data structures and algorithms, use of ex-
isting parallel applications and environments, or transforming the problem
into an embarrassingly parallel form.

Quick Quiz 3.11: OK, if we are going to have to apply distributed-programming
techniques to shared-memory parallel programs, why not just always use these
distributed techniques and dispense with shared memory? H

So, to sum up:

1. The good news is that multicore systems are inexpensive and readily
available.

2. More good news: The overhead of many synchronization operations is
much lower than it was on parallel systems from the early 2000s.

3. The bad news is that the overhead of cache misses is still high, especially
on large systems.

The remainder of this book describes ways of handling this bad news.
In particular, Chapter 4 will cover some of the low-level tools used for
parallel programming, Chapter 5 will investigate problems and solutions to

61

parallel counting, and Chapter 6 will discuss design disciplines that promote
performance and scalability.

62

Chapter 4
Tools of the Trade

You are only as good as your tools, and your tools are
only as good as you are.

Unknown

This chapter provides a brief introduction to some basic tools of the parallel-
programming trade, focusing mainly on those available to user applications
running on operating systems similar to Linux. Section 4.1 begins with
scripting languages, Section 4.2 describes the multi-process parallelism
supported by the POSIX API and touches on POSIX threads, Section 4.3
presents analogous operations in other environments, and finally, Section 4.4
helps to choose the tool that will get the job done.

Quick Quiz 4.1: You call these tools??? They look more like low-level
synchronization primitives to me! Wl

Please note that this chapter provides but a brief introduction. More
detail is available from the references (and from the Internet), and more
information will be provided in later chapters.

4.1 Scripting Languages

The supreme excellence is simplicity.

Henry Wadsworth Longfellow, simplified

The Linux shell scripting languages provide simple but effective ways
of managing parallelism. For example, suppose that you had a program
compute_it that you needed to run twice with two different sets of argu-
ments. This can be accomplished using UNIX shell scripting as follows:

compute it 1 > compute it 2 >
compute it.l.out & compute it.2.out &

wait

’cat compute_it.1l.out ‘

’cat compute it.2.out ‘

Figure 4.1: Execution Diagram for Parallel Shell Execution

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1.out

cat compute_it.2.out

[

Lines 1 and 2 launch two instances of this program, redirecting their
output to two separate files, with the & character directing the shell to run
the two instances of the program in the background. Line 3 waits for both
instances to complete, and lines 4 and 5 display their output. The resulting
execution is as shown in Figure 4.1: The two instances of compute_it
execute in parallel, wait completes after both of them do, and then the two
instances of cat execute sequentially.

Quick Quiz 4.2: But this silly shell script isn’t a real parallel program! Why
bother with such trivia???

Quick Quiz 4.3: s there a simpler way to create a parallel shell script? If so,
how? If not, why not? H

64

For another example, the make software-build scripting language provides
a —j option that specifies how much parallelism should be introduced into
the build process. Thus, typing make -j4 when building a Linux kernel
specifies that up to four build steps be executed concurrently.

It is hoped that these simple examples convince you that parallel program-
ming need not always be complex or difficult.

Quick Quiz 4.4: But if script-based parallel programming is so easy, why bother
with anything else? W

4.2 POSIX Multiprocessing

A camel is a horse designed by committee.

Unknown

This section scratches the surface of the POSIX environment, including
pthreads [Ope97], as this environment is readily available and widely im-
plemented. Section 4.2.1 provides a glimpse of the POSIX fork() and
related primitives, Section 4.2.2 touches on thread creation and destruction,
Section 4.2.3 gives a brief overview of POSIX locking, and, finally, Sec-
tion 4.2.4 describes a specific lock which can be used for data that is read
by many threads and only occasionally updated.

4.2.1 POSIX Process Creation and Destruction

Processes are created using the fork () primitive, they may be destroyed
using the k111 () primitive, they may destroy themselves using the exit ()
primitive. A process executing a fork () primitive is said to be the “parent”
of the newly created process. A parent may wait on its children using the
wait () primitive.

Please note that the examples in this section are quite simple. Real-world
applications using these primitives might need to manipulate signals, file
descriptors, shared memory segments, and any number of other resources.
In addition, some applications need to take specific actions if a given child

65

Listing 4.1: Using the fork() Primitive

1 pid = fork();

2 if (pid == 0) {

3 /* child */

4 } else if (pid < 0) {

5 /* parent, upon error */

6 perror("fork");

7 exit (EXIT_FAILURE);

8 } else {

9 /* parent, pid == child ID */
10 }

terminates, and might also need to be concerned with the reason that the
child terminated. These issues can of course add substantial complexity to
the code. For more information, see any of a number of textbooks on the
subject [Ste92, Weil3].

If fork () succeeds, it returns twice, once for the parent and again for
the child. The value returned from fork() allows the caller to tell the
difference, as shown in Listing 4.1 (forkjoin.c). Line 1 executes the
fork() primitive, and saves its return value in local variable pid. Line 2
checks to see if pid is zero, in which case, this is the child, which continues
on to execute line 3. As noted earlier, the child may terminate via the
exit () primitive. Otherwise, this is the parent, which checks for an error
return from the fork () primitive on line 4, and prints an error and exits
on lines 5-7 if so. Otherwise, the fork () has executed successfully, and
the parent therefore executes line 9 with the variable pid containing the
process ID of the child.

The parent process may use the wait () primitive to wait for its children
to complete. However, use of this primitive is a bit more complicated than its
shell-script counterpart, as each invocation of wait () waits for but one child
process. It is therefore customary to wrap wait () into a function similar
to the waitall() function shown in Listing 4.2 (api-pthreads.h), with
this waitall () function having semantics similar to the shell-script wait
command. Each pass through the loop spanning lines 6-14 waits on one
child process. Line 7 invokes the wait () primitive, which blocks until a
child process exits, and returns that child’s process ID. If the process ID
is instead —1, this indicates that the wait () primitive was unable to wait
on a child. If so, line 9 checks for the ECHILD errno, which indicates that

66

Listing 4.2: Using the wait () Primitive

1 static __inline__ void waitall(void)

2 {

3 int pid;

4 int status;

5

6 for (;) {

7 pid = wait(&status);

8 if (pid == -1) {

9 if (errno == ECHILD)
10 break;

11 perror("wait");

12 exit (EXIT_FAILURE);
13 }

14 }

15 X

there are no more child processes, so that line 10 exits the loop. Otherwise,
lines 11 and 12 print an error and exit.

Quick Quiz 4.5: Why does this wait () primitive need to be so complicated?
Why not just make it work like the shell-script wait does? H

It is critically important to note that the parent and child do not
share memory. This is illustrated by the program shown in Listing 4.3
(forkjoinvar.c), in which the child sets a global variable x to 1 on line 9,
prints a message on line 10, and exits on line 11. The parent continues at
line 20, where it waits on the child, and on line 21 finds that its copy of the
variable x is still zero. The output is thus as follows:

Child process set x=1
Parent process sees x=0

Quick Quiz 4.6: Isn’t there a lot more to fork() and wait () than discussed
here? M

The finest-grained parallelism requires shared memory, and this is covered
in Section 4.2.2. That said, shared-memory parallelism can be significantly
more complex than fork-join parallelism.

67

Listing 4.3: Processes Created Via fork () Do Not Share Memory

1 int x = 0;

3 int main(int argc, char *argv[])

4 {

5 int pid;

6

7 pid = fork(Q);

8 if (pid == 0) { /* child */

9 x = 1;

10 printf("Child process set x=1\n");
11 exit (EXIT_SUCCESS) ;

12 }

13 if (pid < 0) { /* parent, upon error */
14 perror ("fork");

15 exit (EXIT_FAILURE);

16 }

17

18 /* parent */

19

20 waitall();

21 printf ("Parent process sees x=)d\n", x);
2

23 return EXIT_SUCCESS;

21 }

4.2.2 POSIX Thread Creation and Destruction

To create a thread within an existing process, invoke the pthread_create ()
primitive, for example, as shown on lines 16 and 17 of Listing 4.4 (pcreate.
c). The first argument is a pointer to a pthread_t in which to store the
ID of the thread to be created, the second NULL argument is a pointer to an
optional pthread_attr_t, the third argument is the function (in this case,
mythread()) that is to be invoked by the new thread, and the last NULL
argument is the argument that will be passed to mythread ().

In this example, mythread () simply returns, but it could instead call
pthread_exit ().

Quick Quiz 4.7: If the mythread () function in Listing 4.4 can simply return,
why bother with pthread_exit()? W

The pthread_join() primitive, shown on line 24, is analogous to the
fork-join wait () primitive. It blocks until the thread specified by the
tid variable completes execution, either by invoking pthread_exit ()

Listing 4.4: Threads Created Via pthread_create () Share Memory

int x = 0;

1
2

3 void *mythread(void *arg)

4 {

5 x =1;

6 printf("Child process set x=1\n");

7 return NULL;

s }

9

10 int main(int argc, char xargv([])

n A{

12 int en;

13 pthread_t tid;

14 void *vp;

15

16 if ((en = pthread_create(&tid, NULL,

17 mythread, NULL)) != 0) {

18 fprintf (stderr, "pthread_create: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 }

21

2 /* parent */

23

24 if ((en = pthread_join(tid, &vp)) != 0) {

25 fprintf (stderr, "pthread_join: %s\n", strerror(en));
26 exit (EXIT_FAILURE);

27 }

28 printf ("Parent process sees x=/d\n", x);

29

30 return EXIT_SUCCESS;

31}

69

or by returning from the thread’s top-level function. The thread’s exit
value will be stored through the pointer passed as the second argument to
pthread_join(). The thread’s exit value is either the value passed to
pthread_exit () or the value returned by the thread’s top-level function,
depending on how the thread in question exits.

The program shown in Listing 4.4 produces output as follows, demon-
strating that memory is in fact shared between the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only one of the threads
stores a value to variable x at a time. Any situation in which one thread
might be storing a value to a given variable while some other thread either
loads from or stores to that same variable is termed a data race. Because
the C language makes no guarantee that the results of a data race will be in
any way reasonable, we need some way of safely accessing and modifying
data concurrently, such as the locking primitives discussed in the following
section.

But your data races are benign, you say? Well, maybe they are. But
please do everyone (yourself included) a big favor and read Section 4.3.4.1
very carefully. As compilers optimize more and more aggressively, there
are fewer and fewer truly benign data races.

Quick Quiz 4.8: If the C language makes no guarantees in presence of a data
race, then why does the Linux kernel have so many data races? Are you trying to
tell me that the Linux kernel is completely broken??? W

4.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data races via “POSIX
locking”. POSIX locking features a number of primitives, the most fun-
damental of which are pthread_mutex_lock() and pthread_mutex_
unlock (). These primitives operate on locks, which are of type pthread_
mutex_t. These locks may be declared statically and initialized with
PTHREAD_MUTEX_INITIALIZER, or they may be allocated dynamically and

70

initialized using the pthread_mutex_init () primitive. The demonstra-
tion code in this section will take the former course.

The pthread_mutex_lock() primitive “acquires” the specified lock,
and the pthread_mutex_unlock() “releases” the specified lock. Because
these are “exclusive” locking primitives, only one thread at a time may
“hold” a given lock at a given time. For example, if a pair of threads attempt
to acquire the same lock concurrently, one of the pair will be “granted” the
lock first, and the other will wait until the first thread releases the lock. A
simple and reasonably useful programming model permits a given data item
to be accessed only while holding the corresponding lock [Hoa74].

Quick Quiz 4.9: What if [want several threads to hold the same lock at the same
time? W

This exclusive-locking property is demonstrated using the code shown in
Listing 4.5 (Lock.c). Line 1 defines and initializes a POSIX lock named
lock_a, while line 2 similarly defines and initializes a lock named lock_b.
Line 4 defines and initializes a shared variable x.

Lines 6-33 define a function lock_reader () which repeatedly reads
the shared variable x while holding the lock specified by arg. Line 12 casts
arg to a pointer to a pthread_mutex_t, as required by the pthread_
mutex_lock() and pthread_mutex_unlock() primitives.

Quick Quiz 4.10: Why not simply make the argument to Lock_reader () on
line 6 of Listing 4.5 be a pointer to a pthread_mutex_t? W

Quick Quiz 4.11: What is the READ_ONCE() on lines 20 and 47 and the
WRITE_ONCE() on line 47 of Listing 4.5? W

Lines 14—18 acquire the specified pthread_mutex_t, checking for errors
and exiting the program if any occur. Lines 19-26 repeatedly check the value
of x, printing the new value each time that it changes. Line 25 sleeps for one
millisecond, which allows this demonstration to run nicely on a uniprocessor
machine. Lines 27-31 release the pthread_mutex_t, again checking for
errors and exiting the program if any occur. Finally, line 32 returns NULL,
again to match the function type required by pthread_create ().

Listing 4.5: Demonstration of Exclusive Locks

I pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3

4 int x = 03

5

6 void *lock_reader(void *arg)

7 9{

8 int en;

9 int i;

10 int newx = -1;

11 int oldx = -1;

2 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;

13

14 if ((en = pthread_mutex_lock(pmlp)) != 0) {

15 fprintf (stderr, "lock_reader:pthread_mutex_lock: %s\n",
16 strerror(en));

17 exit (EXIT_FAILURE) ;

18 }

19 for (i = 0; i < 100; i++) {

20 newx = READ_ONCE(x) ;

21 if (newx != oldx) {

2 printf ("lock_reader(): x = %d\n", newx);
23 }

24 oldx = newx;

25 poll(NULL, 0, 1);

2

27 if ((en = pthread_mutex_unlock(pmlp)) != 0) {

28 fprintf (stderr, "lock_reader:pthread_mutex_unlock: %s\n",
29 strerror(en));

30 exit (EXIT_FAILURE);

31 }

32 return NULL;

3}

34

35 void *lock_writer(void *arg)

36 {

37 int en;

38 int i;

39 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;

40

41 if ((en = pthread_mutex_lock(pmlp)) != 0) {

1 fprintf (stderr, "lock_writer:pthread_mutex_lock: %s\n",
43 strerror(en));

44 exit (EXIT_FAILURE) ;

4s }

46 for (i = 0; i < 3; i++) {

47 WRITE_ONCE(x, READ_ONCE(x) + 1);

48 poll(NULL, 0, 5);

49 }

50 if ((en = pthread_mutex_unlock(pmlp)) != 0) {

51 fprintf (stderr, "lock_writer:pthread_mutex_unlock: %s\n",
52 strerror(en));

53 exit (EXIT_FAILURE) ;

54 ¥

55 return NULL;

Listing 4.6: Demonstration of Same Exclusive Lock

1 printf ("Creating two threads using same lock:\n");

2 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);

3 if (en !=0) {

4 fprintf (stderr, "pthread_create: %s\n", strerror(en));
5 exit (EXIT_FAILURE);

6 ¥

7 en = pthread_create(&tid2, NULL, lock_writer, &lock_a);

8 if (en !=0) {

9 fprintf (stderr, "pthread_create: %s\n", strerror(en));
10 exit (EXIT_FAILURE);

11

12 if ((en = pthread_join(tidl, &vp)) != 0) {

13 fprintf (stderr, "pthread_join: %s\n", strerror(en));
14 exit (EXIT_FAILURE);

15

16 if ((en = pthread_join(tid2, &vp)) != 0) {

17 fprintf(stderr, "pthread_join: %s\n", strerror(en));
18 exit (EXIT_FAILURE);

19 ¥

Quick Quiz 4.12: Writing four lines of code for each acquisition and release of a
pthread_mutex_t sure seems painful! Isn’t there a better way? W

Lines 35-56 of Listing 4.5 show lock_writer (), which periodically
updates the shared variable x while holding the specified pthread_mutex_
t. As with lock_reader (), line 39 casts arg to a pointer to pthread_
mutex_t, lines 4145 acquire the specified lock, and lines 50-54 release
it. While holding the lock, lines 46—49 increment the shared variable x,
sleeping for five milliseconds between each increment. Finally, lines 50-54
release the lock.

Listing 4.6 shows a code fragment that runs lock_reader () and lock_
writer () as threads using the same lock, namely, lock_a. Lines 2-6
create a thread running lock_reader (), and then lines 7—11 create a thread
running lock_writer (). Lines 12—19 wait for both threads to complete.
The output of this code fragment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Listing 4.7: Demonstration of Different Exclusive Locks

printf ("Creating two threads w/different locks:\n");

1

2 x = 0;

3 en = pthread_create(&tidl, NULL, lock_reader, &lock_a);

4 if (en !'=0) {

5 fprintf (stderr, "pthread_create: %s\n", strerror(en));
6 exit (EXIT_FAILURE);

7 }

8 en = pthread_create(&tid2, NULL, lock_writer, &lock_b);

9 if (en !'= 0) {

10 fprintf (stderr, "pthread_create: %s\n", strerror(en));
11 exit (EXIT_FAILURE);

12 }

13 if ((en = pthread_join(tidl, &vp)) != 0) {

14 fprintf (stderr, "pthread_join: %s\n", strerror(en));
15 exit (EXIT_FAILURE);

16 }

17 if ((en = pthread_join(tid2, &vp)) != 0) {

18 fprintf (stderr, "pthread_join: %s\n", strerror(en));
19 exit (EXIT_FAILURE);

20 i

Because both threads are using the same lock, the lock_reader () thread
cannot see any of the intermediate values of x produced by lock_writer ()
while holding the lock.

Quick Quiz 4.13: Is “x = 0” the only possible output from the code fragment
shown in Listing 4.6? If so, why? If not, what other output could appear, and
why? W

Listing 4.7 shows a similar code fragment, but this time using different
locks: lock_a for lock_reader () and lock_b for lock_writer (). The
output of this code fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

Because the two threads are using different locks, they do not exclude
each other, and can run concurrently. The lock_reader () function can
therefore see the intermediate values of x stored by lock_writer().

74

Quick Quiz 4.14: Using different locks could cause quite a bit of confusion,
what with threads seeing each others’ intermediate states. So should well-written
parallel programs restrict themselves to using a single lock in order to avoid this
kind of confusion? M

Quick Quiz 4.15: In the code shown in Listing 4.7, is lock_reader () guar-
anteed to see all the values produced by lock_writer()? Why or why not?

Quick Quiz 4.16: Wait a minute here!!! Listing 4.6 didn’t initialize shared
variable x, so why does it need to be initialized in Listing 4.7? W

Although there is quite a bit more to POSIX exclusive locking, these
primitives provide a good start and are in fact sufficient in a great many
situations. The next section takes a brief look at POSIX reader-writer
locking.

4.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which is represented by a
pthread_rwlock_t. As with pthread_mutex_t, pthread_rwlock_
t may be statically initialized via PTHREAD_RWLOCK_INITIALIZER
or dynamically initialized via the pthread_rwlock_init() primitive.
The pthread_rwlock_rdlock() primitive read-acquires the specified
pthread_rwlock_t, the pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock() primitive releases it.
Only a single thread may write-hold a given pthread_rwlock_t at any
given time, but multiple threads may read-hold a given pthread_rwlock_t,
at least while there is no thread currently write-holding it.

As you might expect, reader-writer locks are designed for read-mostly
situations. In these situations, a reader-writer lock can provide greater
scalability than can an exclusive lock because the exclusive lock is by
definition limited to a single thread holding the lock at any given time,
while the reader-writer lock permits an arbitrarily large number of readers
to concurrently hold the lock. However, in practice, we need to know how
much additional scalability is provided by reader-writer locks.

Listing 4.8: Measuring Reader-Writer Lock Scalability

pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
unsigned long holdtime = 0;

unsigned long thinktime = 0;

long long *readcounts;

int nreadersrunning = 0;

#define GOFLAG_INIT O
#define GOFLAG_RUN 1
#define GOFLAG_STOP 2

10 char goflag = GOFLAG_INIT;
"

12 void *reader(void *arg)

O K N R W —

13 {

14 int en;

15 int i;

16 long long loopcnt = 0;

17 long me = (long)arg;

18

19 __sync_fetch_and_add(&nreadersrunning, 1);

20 while (READ_ONCE(goflag) == GOFLAG_INIT) {

21 continue;

2 }

23 while (READ_ONCE(goflag) == GOFLAG_RUN) {

24 if ((en = pthread_rwlock_rdlock(&rwl)) != 0) {
25 fprintf (stderr,

2 "pthread_rwlock_rdlock: %s\n", strerror(en));
27 exit (EXIT_FAILURE);

28 ¥

29 for (i = 1; i < holdtime; i++) {

30 wait_microseconds(1);

31 }

32 if ((en = pthread_rwlock_unlock(&rwl)) !'= 0) {
33 fprintf (stderr,

34 "pthread_rwlock_unlock: %s\n", strerror(en));
35 exit (EXIT_FAILURE);

36 }

37 for (i = 1; i < thinktime; i++) {

38 wait_microseconds(1);

39 }

40 loopcnt++;

41 }

42 readcounts[me] = loopcnt;

43 return NULL;

76

Listing 4.8 (rwlockscale. c) shows one way of measuring reader-writer
lock scalability. Line 1 shows the definition and initialization of the reader-
writer lock, line 2 shows the holdtime argument controlling the time each
thread holds the reader-writer lock, line 3 shows the thinktime argument
controlling the time between the release of the reader-writer lock and the
next acquisition, line 4 defines the readcounts array into which each reader
thread places the number of times it acquired the lock, and line 5 defines
the nreadersrunning variable, which determines when all reader threads
have started running.

Lines 7-10 define gof1ag, which synchronizes the start and the end of the
test. This variable is initially set to GOFLAG_INIT, then set to GOFLAG_RUN
after all the reader threads have started, and finally set to GOFLAG_STOP to
terminate the test run.

Lines 12-44 define reader (), which is the reader thread. Line 19
atomically increments the nreadersrunning variable to indicate that this
thread is now running, and lines 20-22 wait for the test to start. The
READ_ONCE() primitive forces the compiler to fetch goflag on each pass
through the loop—the compiler would otherwise be within its rights to
assume that the value of goflag would never change.

Quick Quiz 4.17: Instead of using READ_ONCE() everywhere, why not just
declare goflag as volatile on line 10 of Listing 4.8? H

Quick Quiz 4.18: READ_ONCE() only affects the compiler, not the CPU. Don’t
we also need memory barriers to make sure that the change in goflag’s value
propagates to the CPU in a timely fashion in Listing 4.8? W

Quick Quiz 4.19: Would it ever be necessary to use READ_ONCE() when
accessing a per-thread variable, for example, a variable declared using GCC’s
__thread storage class? W

The loop spanning lines 23-41 carries out the performance test.
Lines 24-28 acquire the lock, lines 29-31 hold the lock for the speci-
fied number of microseconds, lines 32—-36 release the lock, and lines 37-39
wait for the specified number of microseconds before re-acquiring the lock.
Line 40 counts this lock acquisition.

77

ideal 10000us |

1000us

0.1

0.01 |

Critical Section Performance

0.001

0.0001 | | | | | | | |
0 50 100 150 200 250 300 350 400 450

Number of CPUs (Threads)

Figure 4.2: Reader-Writer Lock Scalability vs. Microseconds in Critical
Section on 8-Socket System With Intel Xeon Platinum 8176 CPUs @
2.10GHz

Line 42 moves the lock-acquisition count to this thread’s element of the
readcounts[] array, and line 43 returns, terminating this thread.

Figure 4.2 shows the results of running this test on a 224-core Xeon
system with two hardware threads per core for a total of 448 software-visible
CPUs. The thinktime parameter was zero for all these tests, and the
holdtime parameter set to values ranging from one microsecond (“1us” on
the graph) to 10,000 microseconds (“10000us” on the graph). The actual
value plotted is:

Ly

NL,
where N is the number of threads in the current run, Ly is the total number
of lock acquisitions by all N threads in the current run, and L is the number
of lock acquisitions in a single-threaded run. Given ideal hardware and
software scalability, this value will always be 1.0.

.1

78

As can be seen in the figure, reader-writer locking scalability is decidedly
non-ideal, especially for smaller sizes of critical sections. To see why
read-acquisition can be so slow, consider that all the acquiring threads
must update the pthread_rwlock_t data structure. Therefore, if all 448
executing threads attempt to read-acquire the reader-writer lock concurrently,
they must update this underlying pthread_rwlock_t one at a time. One
lucky thread might do so almost immediately, but the least-lucky thread
must wait for all the other 447 threads to do their updates. This situation will
only get worse as you add CPUs. Note also the logscale y-axis. Even though
the 10,000 microsecond trace appears quite ideal, it has in fact degraded by
about 10 % from ideal.

Quick Quiz 4.20: Isn’t comparing against single-CPU throughput a bit harsh?
|

Quick Quiz 4.21: But one microsecond is not a particularly small size for a
critical section. What do I do if I need a much smaller critical section, for example,
one containing only a few instructions? W

Quick Quiz 4.22: The system used is a few years old, and new hardware should
be faster. So why should anyone worry about reader-writer locks being slow? H

Despite these limitations, reader-writer locking is quite useful in many
cases, for example when the readers must do high-latency file or network
I/O. There are alternatives, some of which will be presented in Chapters 5
and 9.

4.2.5 Atomic Operations (GCC Classic)

Figure 4.2 shows that the overhead of reader-writer locking is most severe
for the smallest critical sections, so it would be nice to have some other way
of protecting tiny critical sections. One such way uses atomic operations.
We have seen an atomic operation already, namely the __sync_fetch_
and_add () primitive on line 19 of Listing 4.8. This primitive atomically
adds the value of its second argument to the value referenced by its first
argument, returning the old value (which was ignored in this case). If a pair
of threads concurrently execute __sync_fetch_and_add() on the same

79

variable, the resulting value of the variable will include the result of both
additions.

The GNU C compiler offers a number of additional atomic opera-
tions, including __sync_fetch_and_sub(), __sync_fetch_and_or(),
__sync_fetch_and_and(), __sync_fetch_and_xor(), and __sync_
fetch_and_nand(), all of which return the old value. If you instead
need the new value, you can instead use the __sync_add_and_fetch(),
__sync_sub_and_fetch(), __sync_or_and_fetch(), __sync_and_
and_fetch(), __sync_xor_and_fetch(), and __sync_nand_and_
fetch() primitives.

[Quick Quiz 4.23: s it really necessary to have both sets of primitives? W]

The classic compare-and-swap operation is provided by a pair
of primitives, __sync_bool_compare_and_swap() and __sync_val_
compare_and_swap(). Both of these primitives atomically update a
location to a new value, but only if its prior value was equal to the specified
old value. The first variant returns 1 if the operation succeeded and O if
it failed, for example, if the prior value was not equal to the specified old
value. The second variant returns the prior value of the location, which,
if equal to the specified old value, indicates that the operation succeeded.
Either of the compare-and-swap operation is “universal” in the sense that
any atomic operation on a single location can be implemented in terms of
compare-and-swap, though the earlier operations are often more efficient
where they apply. The compare-and-swap operation is also capable of
serving as the basis for a wider set of atomic operations, though the more
elaborate of these often suffer from complexity, scalability, and performance
problems [Her90].

Quick Quiz 4.24: Given that these atomic operations will often be able to
generate single atomic instructions that are directly supported by the underlying
instruction set, shouldn’t they be the fastest possible way to get things done? W

The __sync_synchronize() primitive issues a “memory barrier”,
which constrains both the compiler’s and the CPU’s ability to reorder
operations, as discussed in Chapter 15. In some cases, it is sufficient to
constrain the compiler’s ability to reorder operations, while allowing the

Listing 4.9: Compiler Barrier Primitive (for GCC)

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define READ_ONCE(x) \

({ typeof(x) ___x = ACCESS_ONCE(x); ___
#define WRITE_ONCE(x, val) \

do { ACCESS_ONCE(x) = (val); } while (0)
#define barrier() __asm volatile__("": : :"memory")

x; B

CPU free rein, in which case the barrier () primitive may be used. In
some cases, it is only necessary to ensure that the compiler avoids optimizing
away a given memory read, in which case the READ_ONCE () primitive may
be used, as it was on line 20 of Listing 4.5. Similarly, the WRITE_ONCE ()
primitive may be used to prevent the compiler from optimizing away a given
memory write. These last three primitives are not provided directly by GCC,
but may be implemented straightforwardly as shown in Listing 4.9, and all
three are discussed at length in Section 4.3.4. Alternatively, READ_ONCE (x)
has much in common with the GCC intrinsic __atomic_load_n(&x,
__ATOMIC_RELAXED) and WRITE_ONCE() has much in common with the
GCC intrinsic __atomic_store_n(&x, v, __ATOMIC_RELAXED).

[Quick Quiz 4.25: What happened to ACCESS_ONCE()? H]

4.2.6 Atomic Operations (C11)

The C11 standard added atomic operations, including loads (atomic_
load()), stores (atomic_store()), memory barriers (atomic_thread_
fence() and atomic_signal_fence()), and read-modify-write atomics.
The read-modify-write atomics include atomic_fetch_add(), atomic_
fetch_sub(),atomic_fetch_and(),atomic_fetch_xor(),atomic_
exchange (), atomic_compare_exchange_strong(), and atomic_
compare_exchange_weak (). These operate in a manner similar to those
described in Section 4.2.5, but with the addition of memory-order arguments
to _explicit variants of all of the operations. Without memory-order
arguments, all the atomic operations are fully ordered, and the arguments
permit weaker orderings. For example, “atomic_load_explicit(&a,

81
memory_order_relaxed)” is vaguely similar to the Linux kernel’s “READ _
ONCE(O)™.!

4.2.7 Atomic Operations (Modern GCC)

One restriction of the C11 atomics is that they apply only to special atomic
types, which can be problematic. The GNU C compiler therefore pro-
vides atomic intrinsics, including __atomic_load(), __atomic_load_
n(), __atomic_store(), __atomic_store_n(), __atomic_thread_
fence(), etc. These intrinsics offer the same semantics as their C11
counterparts, but may be used on plain non-atomic objects. Some
of these intrinsics may be passed a memory-order argument from this
list: __ATOMIC_RELAXED, _ATOMIC_CONSUME, _ATOMIC_ACQUIRE, _
ATOMIC_RELEASE, __ATOMIC_ACQ_REL, and __ATOMIC_SEQ_CST.

4.2.8 Per-Thread Variables

Per-thread variables, also called thread-specific data, thread-local storage,
and other less-polite names, are used extremely heavily in concurrent code,
as will be explored in Chapters 5 and 8. POSIX supplies the pthread_
key_create() function to create a per-thread variable (and return the
corresponding key), pthread_key_delete() to delete the per-thread
variable corresponding to key, pthread_setspecific() to set the value
of the current thread’s variable corresponding to the specified key, and
pthread_getspecific() to return that value.

A number of compilers (including GCC) provide a __thread specifier
that may be used in a variable definition to designate that variable as being
per-thread. The name of the variable may then be used normally to access the
value of the current thread’s instance of that variable. Of course, __thread
is much easier to use than the POSIX thead-specific data, and so __thread
is usually preferred for code that is to be built only with GCC or other
compilers supporting __thread.

Fortunately, the C11 standard introduced a _Thread_local keyword
that can be used in place of __thread. In the fullness of time, this new

' Memory ordering is described in more detail in Chapter 15 and Appendix C.

82

keyword should combine the ease of use of __thread with the portability
of POSIX thread-specific data.

4.3 Alternatives to POSIX Operations

The strategic marketing paradigm of Open Source is
a massively parallel drunkard’s walk filtered by a
Darwinistic process.

Bruce Perens

Unfortunately, threading operations, locking primitives, and atomic op-
erations were in reasonably wide use long before the various standards
committees got around to them. As a result, there is considerable variation
in how these operations are supported. It is still quite common to find these
operations implemented in assembly language, either for historical reasons
or to obtain better performance in specialized circumstances. For example,
GCC’s __sync_ family of primitives all provide full memory-ordering
semantics, which in the past motivated many developers to create their own
implementations for situations where the full memory ordering semantics
are not required. The following sections show some alternatives from the
Linux kernel and some historical primitives used by this book’s sample
code.

4.3.1 Organization and Initialization

Although many environments do not require any special initialization
code, the code samples in this book start with a call to smp_init(),
which initializes a mapping from pthread_t to consecutive integers. The
userspace RCU library? similarly requires a call to rcu_init (). Although
these calls can be hidden in environments (such as that of GCC) that support
constructors, most of the RCU flavors supported by the userspace RCU
library also require each thread invoke rcu_register_thread() upon
thread creation and rcu_unregister_thread () before thread exit.

2 See Section 9.5 for more information on RCU.

Listing 4.10: Thread API

int smp_thread_id(void)

thread_id_t create_thread(void *(*func) (void *), void *arg)
for_each_thread(t)

for_each_running_thread(t)

void *wait_thread(thread_id_t tid)

void wait_all_threads(void)

In the case of the Linux kernel, it is a philosophical question as to whether
the kernel does not require calls to special initialization code or whether the
kernel’s boot-time code is in fact the required initialization code.

4.3.2 Thread Creation, Destruction, and Control

The Linux kernel uses struct task_struct pointers to track kthreads,
kthread_create() to create them, kthread_should_stop() to ex-
ternally suggest that they stop (which has no POSIX equivalent),’
kthread_stop() to wait for them to stop, and schedule_timeout_
interruptible() for a timed wait. There are quite a few additional
kthread-management APIs, but this provides a good start, as well as good
search terms.

The CodeSamples API focuses on “threads”, which are a locus of
control.* Each such thread has an identifier of type thread_id_t, and no
two threads running at a given time will have the same identifier. Threads
share everything except for per-thread local state,” which includes program
counter and stack.

The thread API is shown in Listing 4.10, and members are described in
the following sections.

3 POSIX environments can work around the lack of kthread_should_stop() by using
a properly synchronized boolean flag in conjunction with pthread_join().
4 There are many other names for similar software constructs, including “process”, “task”,

“fiber”, “event”, “execution agent”, and so on. Similar design principles apply to all of them.
5 How is that for a circular definition?

84

4.3.2.1 create_thread()

The create_thread() primitive creates a new thread, starting the new
thread’s execution at the function func specified by create_thread()’s
first argument, and passing it the argument specified by create_thread()’s
second argument. This newly created thread will terminate when it returns
from the starting function specified by func. The create_thread()
primitive returns the thread_id_t corresponding to the newly created
child thread.

This primitive will abort the program if more than NR_THREADS threads
are created, counting the one implicitly created by running the program.
NR_THREADS is a compile-time constant that may be modified, though some
systems may have an upper bound for the allowable number of threads.

4.3.2.2 smp_thread_id()

Because the thread_id_t returned from create_thread() is system-
dependent, the smp_thread_id () primitive returns a thread index corre-
sponding to the thread making the request. This index is guaranteed to be
less than the maximum number of threads that have been in existence since
the program started, and is therefore useful for bitmasks, array indices, and
the like.

4.3.2.3 for_each_thread()

The for_each_thread() macro loops through all threads that exist, in-
cluding all threads that would exist if created. This macro is useful for
handling the per-thread variables introduced in Section 4.2.8.

43.2.4 for_each_running_thread()

The for_each_running_thread() macro loops through only those
threads that currently exist. It is the caller’s responsibility to synchro-
nize with thread creation and deletion if required.

85

Listing 4.11: Example Child Thread

| void *thread_test(void *arg)

2 {

3 int myarg = (intptr_t)arg;

4

s printf("child thread %d: smp_thread_id() = %d\n",
6 myarg, smp_thread_id());

7 return NULL;

8 }

4.3.2.5 wait_thread()

The wait_thread () primitive waits for completion of the thread specified
by the thread_id_t passed to it. This in no way interferes with the
execution of the specified thread; instead, it merely waits for it. Note that
wait_thread() returns the value that was returned by the corresponding
thread.

4.3.2.6 wait_all_threads()

The wait_all_threads () primitive waits for completion of all currently
running threads. It is the caller’s responsibility to synchronize with thread
creation and deletion if required. However, this primitive is normally used
to clean up at the end of a run, so such synchronization is normally not
needed.

4.3.2.7 Example Usage

Listing 4.11 (threadcreate. c) shows an example hello-world-like child
thread. As noted earlier, each thread is allocated its own stack, so each
thread has its own private arg argument and myarg variable. Each child
simply prints its argument and its smp_thread_id () before exiting. Note
that the return statement on line 7 terminates the thread, returning a NULL
to whoever invokes wait_thread () on this thread.

The parent program is shown in Listing 4.12. It invokes smp_init () to
initialize the threading system on line 6, parses arguments on lines 8—15,
and announces its presence on line 16. It creates the specified number of
child threads on lines 18—19, and waits for them to complete on line 21.

86

Listing 4.12: Example Parent Thread

| int main(int argc, char *argv[])

2 {

3 int i;

4 int nkids = 1;

5

6 smp_init();

7

8 if (arge > 1) {

9 nkids = strtoul(argv[1], NULL, 0);

10 if (nkids > NR_THREADS) {

11 fprintf(stderr, "nkids = Jd too large, max = %d\n",
12 nkids, NR_THREADS);

13 usage (argv[0]);

14 }

15 }

16 printf ("Parent thread spawning %d threads.\n", nkids);
17

18 for (i = 0; i < nkids; i++)

19 create_thread(thread_test, (void *) (intptr_t)i);
20

21 wait_all_threads();

2

23 printf("All spawned threads completed.\n");

24

25 exit(0);

2 }

Note that wait_all_threads () discards the threads return values, as in
this case they are all NULL, which is not very interesting.

Quick Quiz 4.26: What happened to the Linux-kernel equivalents to fork ()
and wait ()? M

4.3.3 Locking

A good starting subset of the Linux kernel’s locking API is shown in
Listing 4.13, each API element being described in the following sections.
This book’s CodeSamples locking API closely follows that of the Linux
kernel.

87

Listing 4.13: Locking API

void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);

int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

4.3.3.1 spin_lock_init()

The spin_lock_init () primitive initializes the specified spinlock_t
variable, and must be invoked before this variable is passed to any other
spinlock primitive.

4.3.3.2 spin_lock(Q)

The spin_lock() primitive acquires the specified spinlock, if necessary,
waiting until the spinlock becomes available. In some environments, such
as pthreads, this waiting will involve blocking, while in others, such as the
Linux kernel, it might involve a CPU-bound spin loop.

The key point is that only one thread may hold a spinlock at any given
time.

4.3.3.3 spin_trylock()

The spin_trylock() primitive acquires the specified spinlock, but only
if it is immediately available. It returns true if it was able to acquire the
spinlock and false otherwise.

4.3.3.4 spin_unlock()
The spin_unlock() primitive releases the specified spinlock, allowing
other threads to acquire it.

4.3.3.5 Example Usage

A spinlock named mutex may be used to protect a variable counter as
follows:

88

Listing 4.14: Living Dangerously Early 1990s Style
1 ptr = global_ptr;

2 if (ptr != NULL && ptr < high_address)

3 do_low(ptr);

Listing 4.15: C Compilers Can Invent Loads

1 if (global_ptr != NULL &&
2 global_ptr < high_address)
3 do_low(global_ptr);

spin_lock(&mutex) ;
counter++;
spin_unlock(&mutex) ;

Quick Quiz 4.27: What problems could occur if the variable counter were
incremented without the protection of mutex? W

However, the spin_lock() and spin_unlock() primitives do have
performance consequences, as will be seen in Chapter 10.

4.3.4 Accessing Shared Variables

It was not until 2011 that the C standard defined semantics for concurrent
read/write access to shared variables. However, concurrent C code was
being written at least a quarter century earlier [BK85, Inm85]. This raises
the question as to what today’s greybeards did back in long-past pre-C11
days. A short answer to this question is “they lived dangerously”.

At least they would have been living dangerously had they been using
2021 compilers. In (say) the early 1990s, compilers did fewer optimizations,
in part because there were fewer compiler writers and in part due to the
relatively small memories of that era. Nevertheless, problems did arise, as
shown in Listing 4.14, which the compiler is within its rights to transform
into Listing 4.15. As you can see, the temporary on line 1 of Listing 4.14
has been optimized away, so that global_ptr will be loaded up to three
times.

89

Quick Quiz 4.28: What is wrong with loading Listing 4.14’s global_ptr up to
three times? M

Section 4.3.4.1 describes additional problems caused by plain accesses,
Sections 4.3.4.2 and 4.3.4.3 describe some pre-C11 solutions. Of course,
where practical, direct C-language memory references should be replaced
by the primitives described in Section 4.2.5 or (especially) Section 4.2.6.
Use these primitives to avoid data races, that is, ensure that if there are
multiple concurrent C-language accesses to a given variable, all of those
accesses are loads.

4.3.4.1 Shared-Variable Shenanigans

Given code that does plain loads and stores,® the compiler is within its rights
to assume that the affected variables are neither accessed nor modified by
any other thread. This assumption allows the compiler to carry out a large
number of transformations, including load tearing, store tearing, load fusing,
store fusing, code reordering, invented loads, invented stores, store-to-load
transformations, and dead-code elimination, all of which work just fine in
single-threaded code. But concurrent code can be broken by each of these
transformations, or shared-variable shenanigans, as described below.

Load tearing occurs when the compiler uses multiple load instructions
for a single access. For example, the compiler could in theory compile the
load from global_ptr (see line 1 of Listing 4.14) as a series of one-byte
loads. If some other thread was concurrently setting global_ptr to NULL,
the result might have all but one byte of the pointer set to zero, thus forming
a “wild pointer”. Stores using such a wild pointer could corrupt arbitrary
regions of memory, resulting in rare and difficult-to-debug crashes.

Worse yet, on (say) an 8-bit system with 16-bit pointers, the compiler
might have no choice but to use a pair of 8-bit instructions to access a given
pointer. Because the C standard must support all manner of systems, the
standard cannot rule out load tearing in the general case.

Store tearing occurs when the compiler uses multiple store instructions
for a single access. For example, one thread might store 0x12345678

6 That is, normal loads and stores instead of C11 atomics, inline assembly, or volatile
accesses.

90

Listing 4.16: Inviting Load Fusing

I while (!'need_to_stop)
2 do_something_quickly();

to a four-byte integer variable at the same time another thread stored
Oxabcdef00. If the compiler used 16-bit stores for either access, the result
might well be 0x1234e£00, which could come as quite a surprise to code
loading from this integer. Nor is this a strictly theoretical issue. For example,
there are CPUs that feature small immediate instruction fields, and on such
CPUs, the compiler might split a 64-bit store into two 32-bit stores in order
to reduce the overhead of explicitly forming the 64-bit constant in a register,
even on a 64-bit CPU. There are historical reports of this actually happening
in the wild (e.g. [KM13]), but there is also a recent report [Deal 9.7

Of course, the compiler simply has no choice but to tear some stores
in the general case, given the possibility of code using 64-bit integers
running on a 32-bit system. But for properly aligned machine-sized stores,
WRITE_ONCE() will prevent store tearing.

Load fusing occurs when the compiler uses the result of a prior load
from a given variable instead of repeating the load. Not only is this sort
of optimization just fine in single-threaded code, it is often just fine in
multithreaded code. Unfortunately, the word “often” hides some truly
annoying exceptions.

For example, suppose that a real-time system needs to invoke a function
named do_something_quickly() repeatedly until the variable need_
to_stop was set, and that the compiler can see that do_something_
quickly () does not store to need_to_stop. One (unsafe) way to code
this is shown in Listing 4.16. The compiler might reasonably unroll this loop
sixteen times in order to reduce the per-invocation of the backwards branch
at the end of the loop. Worse yet, because the compiler knows that do_
something_quickly() does not store to need_to_stop, the compiler
could quite reasonably decide to check this variable only once, resulting

7 Note that this tearing can happen even on properly aligned and machine-word-sized
accesses, and in this particular case, even for volatile stores. Some might argue that this
behavior constitutes a bug in the compiler, but either way it illustrates the perceived value of
store tearing from a compiler-writer viewpoint.

91

Listing 4.17: C Compilers Can Fuse Loads

1 if (!need_to_stop)

2 for (5;) {

3 do_something_quickly();
4 do_something_quickly();
5 do_something_quickly();
6 do_something_quickly();
7 do_something_quickly();
8 do_something_quickly();
9 do_something_quickly();
10 do_something_quickly();
11 do_something_quickly();
12 do_something_quickly();
13 do_something_quickly();
14 do_something_quickly();
15 do_something_quickly();
16 do_something_quickly();
17 do_something_quickly();
18 do_something_quickly();
19 }

in the code shown in Listing 4.17. Once entered, the loop on lines 2—19
will never exit, regardless of how many times some other thread stores a
non-zero value to need_to_stop. The result will at best be consternation,
and might well also include severe physical damage.

The compiler can fuse loads across surprisingly large spans of code.
For example, in Listing 4.18, t0() and t1() run concurrently, and do_
something() and do_something_else() are inline functions. Line 1
declares pointer gp, which C initializes to NULL by default. At some point,
line 5 of t0() stores a non-NULL pointer to gp. Meanwhile, t1() loads
from gp three times on lines 10, 12, and 15. Given that line 13 finds that
gp is non-NULL, one might hope that the dereference on line 15 would be
guaranteed never to fault. Unfortunately, the compiler is within its rights to
fuse the read on lines 10 and 15, which means that if line 10 loads NULL and
line 12 loads &myvar, line 15 could load NULL, resulting in a fault.® Note
that the intervening READ_ONCE() does not prevent the other two loads
from being fused, despite the fact that all three are loading from the same
variable.

8 Will Deacon reports that this happened in the Linux kernel.

92

Listing 4.18: C Compilers Can Fuse Non-Adjacent Loads

1 int *gp;
2
3 void t0(void)

4 {

5 WRITE_ONCE(gp, &myvar);
6 }

7

8 void t1(void)

9 {

10 pl = gp;

11 do_something(p1l);

12 p2 = READ_ONCE(gp) ;

13 if (p2) {

14 do_something_else();
15 p3 = *gp;

16 }

17}

Quick Quiz 4.29: Why does it matter whether do_something() and do_
something_else() in Listing 4.18 are inline functions? W

Store fusing can occur when the compiler notices a pair of successive
stores to a given variable with no intervening loads from that variable. In
this case, the compiler is within its rights to omit the first store. This is never
a problem in single-threaded code, and in fact it is usually not a problem in
correctly written concurrent code. After all, if the two stores are executed
in quick succession, there is very little chance that some other thread could
load the value from the first store.

However, there are exceptions, for example as shown in Listing 4.19. The
function shut_it_down () stores to the shared variable status on lines 3
and 8, and so assuming that neither start_shutdown() nor finish_
shutdown () access status, the compiler could reasonably remove the
store to status on line 3. Unfortunately, this would mean that work_
until_shut_down() would never exit its loop spanning lines 14 and 15,
and thus would never set other_task_ready, which would in turn mean
that shut_it_down() would never exit its loop spanning lines 5 and 6,
even if the compiler chooses not to fuse the successive loads from other_
task_ready on line 5.

93

Listing 4.19: C Compilers Can Fuse Stores

| void shut_it_down(void)

2 {

3 status = SHUTTING_DOWN; /* BUGGY!!! */

4 start_shutdown();

5 while (!other_task_ready) /* BUGGY!!! x/
6 continue;

7 finish_shutdown();

8 status = SHUT_DOWN; /* BUGGY!!! x/

9 do_something_else();

0}

11

12 void work_until_shut_down(void)

13

14 while (status != SHUTTING_DOWN) /* BUGGY!!! x/
15 do_more_work() ;

16 other_task_ready = 1; /* BUGGY!!! */

17 }

And there are more problems with the code in Listing 4.19, including
code reordering.

Code reordering is a common compilation technique used to combine
common subexpressions, reduce register pressure, and improve utilization of
the many functional units available on modern superscalar microprocessors.
It is also another reason why the code in Listing 4.19 is buggy. For example,
suppose that the do_more_work() function on line 15 does not access
other_task_ready. Then the compiler would be within its rights to move
the assignment to other_task_ready on line 16 to precede line 14, which
might be a great disappointment for anyone hoping that the last call to do_
more_work () on line 15 happens before the call to finish_shutdown()
on line 7.

It might seem futile to prevent the compiler from changing the order of
accesses in cases where the underlying hardware is free to reorder them.
However, modern machines have exact exceptions and exact interrupts,
meaning that any interrupt or exception will appear to have happened at a
specific place in the instruction stream. This means that the handler will see
the effect of all prior instructions, but won’t see the effect of any subsequent
instructions. READ_ONCE () and WRITE_ONCE() can therefore be used to

94

Listing 4.20: Inviting an Invented Store

1 if (condition)

2 a=1;
3 else
4 do_a_bunch_of_stuff();

control communication between interrupted code and interrupt handlers,
independent of the ordering provided by the underlying hardware.’

Invented loads were illustrated by the code in Listings 4.14 and 4.15, in
which the compiler optimized away a temporary variable, thus loading from
a shared variable more often than intended.

Invented loads can be a performance hazard. These hazards can occur
when a load of variable in a “hot” cacheline is hoisted out of an if
statement. These hoisting optimizations are not uncommon, and can cause
significant increases in cache misses, and thus significant degradation of
both performance and scalability.

Invented stores can occur in a number of situations. For example,
a compiler emitting code for work_until_shut_down() in Listing 4.19
might notice that other_task_ready is not accessed by do_more_work (),
and stored to on line 16. If do_more_work () was a complex inline function,
it might be necessary to do a register spill, in which case one attractive place
to use for temporary storage is other_task_ready. After all, there are no
accesses to it, so what is the harm?

Of course, a non-zero store to this variable at just the wrong time would
result in the while loop on line 5 terminating prematurely, again allowing
finish_shutdown() to run concurrently with do_more_work (). Given
that the entire point of this while appears to be to prevent such concurrency,
this is not a good thing.

Using a stored-to variable as a temporary might seem outlandish, but
it is permitted by the standard. Nevertheless, readers might be justified
in wanting a less outlandish example, which is provided by Listings 4.20
and 4.21.

9 That said, the various standards committees would prefer that you use atomics or
variables of type sig_atomic_t, instead of READ_ONCE() and WRITE_ONCE().

95

Listing 4.21: Compiler Invents an Invited Store

1 a=1;

2 if ('condition) {

3 a = 0;

4 do_a_bunch_of_stuff();
5}

Listing 4.22: Inviting a Store-to-Load Conversion

1 rl =p;

2 if (unlikely(r1))

3 do_something_with(r1l);
4 barrier();

s p = NULL;

A compiler emitting code for Listing 4.20 might know that the value of
a is initially zero, which might be a strong temptation to optimize away
one branch by transforming this code to that in Listing 4.21. Here, line 1
unconditionally stores 1 to a, then resets the value back to zero on line 3
if condition was not set. This transforms the if-then-else into an if-then,
saving one branch.

Quick Quiz 4.30: Ouch! So can’t the compiler invent a store to a normal variable
pretty much any time it likes? W

Finally, pre-C11 compilers could invent writes to unrelated variables
that happened to be adjacent to written-to variables [Boe05, Section 4.2].
This variant of invented stores has been outlawed by the prohibition against
compiler optimizations that invent data races.

Store-to-load transformations can occur when the compiler notices that
a plain store might not actually change the value in memory. For example,
consider Listing 4.22. Line 1 fetches p, but the “if” statement on line 2
also tells the compiler that the developer thinks that p is usually zero.'? The
barrier () statment on line 4 forces the compiler to forget the value of
p, but one could imagine a compiler choosing to remember the hint—or
getting an additional hint via feedback-directed optimization. Doing so
would cause the compiler to realize that line 5 is often an expensive no-op.

10 The unlikely() function provides this hint to the compiler, and different compilers
provide different ways of implementing unlikely ().

96

Listing 4.23: Compiler Converts a Store to a Load

1 rl = p;

2 if (unlikely(r1))

3 do_something_with(r1l);
4 barrier();

s if (p != NULL)

6 p = NULL;

Such a compiler might therefore guard the store of NULL with a check,
as shown on lines 5 and 6 of Listing 4.23. Although this transformation is
often desirable, it could be problematic if the actual store was required for
ordering. For example, a write memory barrier (Linux kernel smp_wmb ())
would order the store, but not the load. This situation might suggest use of
smp_store_release() over smp_wmb().

Dead-code elimination can occur when the compiler notices that the
value from a load is never used, or when a variable is stored to, but never
loaded from. This can of course eliminate an access to a shared variable,
which can in turn defeat a memory-ordering primitive, which could cause
your concurrent code to act in surprising ways. Experience thus far indicates
that relatively few such surprises will be at all pleasant. Elimination of
store-only variables is especially dangerous in cases where external code
locates the variable via symbol tables: The compiler is necessarily ignorant
of such external-code accesses, and might thus eliminate a variable that the
external code relies upon.

Reliable concurrent code clearly needs a way to cause the compiler
to preserve the number, order, and type of important accesses to shared
memory, a topic taken up by Sections 4.3.4.2 and 4.3.4.3, which are up next.

4.3.4.2 A Volatile Solution

Although it is now much maligned, before the advent of Cl11 and
C++11 [Becll], the volatile keyword was an indispensable tool in
the parallel programmer’s toolbox. This raises the question of exactly what
volatile means, a question that is not answered with excessive precision

97

even by more recent versions of this standard [Smi19].!! This version guar-
antees that “Accesses through volatile glvalues are evaluated strictly
according to the rules of the abstract machine”, that volatile accesses are
side effects, that they are one of the four forward-progress indicators, and
that their exact semantics are implementation-defined. Perhaps the clearest
guidance is provided by this non-normative note:

volatile is a hint to the implementation to avoid aggressive
optimization involving the object because the value of the object
might be changed by means undetectable by an implementation.
Furthermore, for some implementations, volatile might indi-
cate that special hardware instructions are required to access the
object. See 6.8.1 for detailed semantics. In general, the semantics
of volatile are intended to be the same in C++ as they are in C.

This wording might be reassuring to those writing low-level code, except
for the fact that compiler writers are free to completely ignore non-normative
notes. Parallel programmers might instead reassure themselves that compiler
writers would like to avoid breaking device drivers (though perhaps only
after a few “frank and open” discussions with device-driver developers),
and device drivers impose at least the following constraints [MWPF18]:

1. Implementations are forbidden from tearing an aligned volatile access
when machine instructions of that access’s size and type are available.'?
Concurrent code relies on this constraint to avoid unnecessary load
and store tearing.

2. Implementations must not assume anything about the semantics of a
volatile access, nor, for any volatile access that returns a value, about the
possible set of values that might be returned.'> Concurrent code relies
on this constraint to avoid optimizations that are inapplicable given
that other processors might be concurrently accessing the location in
question.

11" JF Bastien thoroughly documented the history and use cases for the volatile keyword
in C++ [Bas18].

12 Note that this leaves unspecified what to do with 128-bit loads and stores on CPUs
having 128-bit CAS but not 128-bit loads and stores.

13 This is strongly implied by the implementation-defined semantics called out above.

98

Listing 4.24: Avoiding Danger, 2018 Style

1 ptr = READ_ONCE(global_ptr);
2 if (ptr != NULL && ptr < high_address)
3 do_low(ptr);

Listing 4.25: Preventing Load Fusing

1 while (!READ_ONCE(need_to_stop))
2 do_something_quickly();

3. Aligned machine-sized non-mixed-size volatile accesses interact natu-
rally with volatile assembly-code sequences before and after. This is
necessary because some devices must be accessed using a combination
of volatile MMIO accesses and special-purpose assembly-language
instructions. Concurrent code relies on this constraint in order to
achieve the desired ordering properties from combinations of volatile
accesses and other means discussed in Section 4.3.4.3.

Concurrent code also relies on the first two constraints to avoid undefined
behavior that could result due to data races if any of the accesses to a given
object was either non-atomic or non-volatile, assuming that all accesses are
aligned and machine-sized. The semantics of mixed-size accesses to the
same locations are more complex, and are left aside for the time being.

So how does volatile stack up against the earlier examples?

Using READ_ONCE() on line 1 of Listing 4.14 avoids invented loads,
resulting in the code shown in Listing 4.24.

As shown in Listing 4.25, READ_ONCE() can also prevent the loop
unrolling in Listing 4.17.

READ_ONCE() and WRITE_ONCE() can also be used to prevent the store
fusing and invented stores that were shown in Listing 4.19, with the result
shown in Listing 4.26. However, this does nothing to prevent code reordering,
which requires some additional tricks taught in Section 4.3.4.3.

Finally, WRITE_ONCE () can be used to prevent the store invention shown
in Listing 4.20, with the resulting code shown in Listing 4.27.

To summarize, the volatile keyword can prevent load tearing and store
tearing in cases where the loads and stores are machine-sized and properly
aligned. It can also prevent load fusing, store fusing, invented loads, and

99

Listing 4.26: Preventing Store Fusing and Invented Stores

| void shut_it_down(void)

2 {

3 WRITE_ONCE(status, SHUTTING_DOWN); /* BUGGY!!! */

4 start_shutdown();

5 while (!READ_ONCE(other_task_ready)) /* BUGGY!!! */
6 continue;

7 finish_shutdown();

8 WRITE_ONCE(status, SHUT_DOWN); /* BUGGY!!! */

9 do_something_else();

0}

11

12 void work_until_shut_down(void)

13

14 while (READ_ONCE(status) != SHUTTING_DOWN) /* BUGGY!!! x/
15 do_more_work() ;

16 WRITE_ONCE(other_task_ready, 1); /* BUGGY!!! x/

17 }

Listing 4.27: Disinviting an Invented Store

1 if (condition)

2 WRITE_ONCE(a, 1);
3 else
4 do_a_bunch_of_stuff();

invented stores. However, although it does prevent the compiler from
reordering volatile accesses with each other, it does nothing to prevent
the CPU from reordering these accesses. Furthermore, it does nothing to
prevent either compiler or CPU from reordering non-volatile accesses
with each other or with volatile accesses. Preventing these types of
reordering requires the techniques described in the next section.

4.3.4.3 Assembling the Rest of a Solution

Additional ordering has traditionally been provided by recourse to assembly
language, for example, GCC asm directives. Oddly enough, these direc-
tives need not actually contain assembly language, as exemplified by the
barrier () macro shown in Listing 4.9.

In the barrier () macro, the __asm__ introduces the asm directive, the
__volatile__ prevents the compiler from optimizing the asm away, the
empty string specifies that no actual instructions are to be emitted, and the

100

Listing 4.28: Preventing C Compilers From Fusing Loads

while (!'need_to_stop) {

1

2 barrier();

3 do_something_quickly();
4 barrier();

5}

Listing 4.29: Preventing Reordering

| void shut_it_down(void)

2 {

3 WRITE_ONCE(status, SHUTTING_DOWN);
4 smp_mb () ;

5 start_shutdown();

6 while (!READ_ONCE(other_task_ready))
7 continue;

8 smp_mb () ;

9 finish_shutdown();

10 smp_mb() ;

11 WRITE_ONCE(status, SHUT_DOWN);

12 do_something_else();

13 }

14

15 void work_until_shut_down(void)

16 {

17 while (READ_ONCE(status) != SHUTTING_DOWN) {
18 smp_mb () ;

19 do_more_work();

20 }

21 smp_mb () ;

22 WRITE_ONCE(other_task_ready, 1);
23}

final "memory" tells the compiler that this do-nothing asm can arbitrarily
change memory. In response, the compiler will avoid moving any memory
references across the barrier () macro. This means that the real-time-
destroying loop unrolling shown in Listing 4.17 can be prevented by adding
barrier () calls as shown on lines 2 and 4 of Listing 4.28. These two lines
of code prevent the compiler from pushing the load from need_to_stop
into or past do_something_quickly () from either direction.

However, this does nothing to prevent the CPU from reordering the
references. In many cases, this is not a problem because the hardware can
only do a certain amount of reordering. However, there are cases such as
Listing 4.19 where the hardware must be constrained. Listing 4.26 prevented

101

store fusing and invention, and Listing 4.29 further prevents the remaining
reordering by addition of smp_mb() on lines 4, 8, 10, 18, and 21. The
smp_mb () macro is similar to barrier () shown in Listing 4.9, but with
the empty string replaced by a string containing the instruction for a full
memory barrier, for example, "mfence" on x86 or "sync" on PowerPC.

Quick Quiz 4.31: But aren’t full memory barriers very heavyweight? Isn’t there
a cheaper way to enforce the ordering needed in Listing 4.29? W

Ordering is also provided by some read-modify-write atomic operations,
some of which are presented in Section 4.3.5. In the general case, memory
ordering can be quite subtle, as discussed in Chapter 15. The next section
covers an alternative to memory ordering, namely limiting or even entirely
avoiding data races.

4.3.4.4 Avoiding Data Races

“Doctor, it hurts my head when I think about concurrently access-
ing shared variables!”

“Then stop concurrently accessing shared variables!!!”

The doctor’s advice might seem unhelpful, but one time-tested way to
avoid concurrently accessing shared variables is access those variables only
when holding a particular lock, as will be discussed in Chapter 7. Another
way is to access a given “shared” variable only from a given CPU or thread,
as will be discussed in Chapter 8. It is possible to combine these two
approaches, for example, a given variable might be modified only by a given
CPU or thread while holding a particular lock, and might be read either
from that same CPU or thread on the one hand, or from some other CPU or
thread while holding that same lock on the other. In all of these situations,
all accesses to the shared variables may be plain C-language accesses.

Here is a list of situations allowing plain loads and stores for some accesses
to a given variable, while requiring markings (such as READ_ONCE() and
WRITE_ONCE()) for other accesses to that same variable:

1. A shared variable is only modified by a given owning CPU or thread,
but is read by other CPUs or threads. All stores must use WRITE_

102

ONCE(). The owning CPU or thread may use plain loads. Everything
else must use READ_ONCE () for loads.

2. A shared variable is only modified while holding a given lock, but is
read by code not holding that lock. All stores must use WRITE_ONCE().
CPUs or threads holding the lock may use plain loads. Everything else
must use READ_ONCE () for loads.

3. A shared variable is only modified while holding a given lock by a
given owning CPU or thread, but is read by other CPUs or threads or
by code not holding that lock. All stores must use WRITE_ONCE().
The owning CPU or thread may use plain loads, as may any CPU or
thread holding the lock. Everything else must use READ_ONCE() for
loads.

4. A shared variable is only accessed by a given CPU or thread and by a
signal or interrupt handler running in that CPU’s or thread’s context.
The handler can use plain loads and stores, as can any code that has
prevented the handler from being invoked, that is, code that has blocked
signals and/or interrupts. All other code must use READ_ONCE () and
WRITE_ONCE().

5. A shared variable is only accessed by a given CPU or thread and by a
signal or interrupt handler running in that CPU’s or thread’s context,
and the handler always restores the values of any variables that it has
written before return. The handler can use plain loads and stores, as
can any code that has prevented the handler from being invoked, that
is, code that has blocked signals and/or interrupts. All other code can
use plain loads, but must use WRITE_ONCE () to prevent store tearing,
store fusing, and invented stores.

Quick Quiz 4.32: What needs to happen if an interrupt or signal handler might
itself be interrupted? W

In most other cases, loads from and stores to a shared variable must
use READ_ONCE() and WRITE_ONCE() or stronger, respectively. But it
bears repeating that neither READ_ONCE() nor WRITE_ONCE() provide

103

any ordering guarantees other than within the compiler. See the above
Section 4.3.4.3 or Chapter 15 for information on such guarantees.

Examples of many of these data-race-avoidance patterns are presented in
Chapter 5.

4.3.5 Atomic Operations

The Linux kernel provides a wide variety of atomic operations, but those
defined on type atomic_t provide a good start. Normal non-tearing
reads and stores are provided by atomic_read() and atomic_set (),
respectively. Acquire load is provided by smp_load_acquire() and
release store by smp_store_release().

Non-value-returning fetch-and-add operations are provided by atomic_
add (), atomic_sub(), atomic_inc(), and atomic_dec (), among oth-
ers. An atomic decrement that returns a reached-zero indication is pro-
vided by both atomic_dec_and_test () and atomic_sub_and_test().
An atomic add that returns the new value is provided by atomic_add_
return(). Bothatomic_add_unless() and atomic_inc_not_zero()
provide conditional atomic operations, where nothing happens unless the
original value of the atomic variable is different than the value specified
(these are very handy for managing reference counters, for example).

An atomic exchange operation is provided by atomic_xchg(), and the
celebrated compare-and-swap (CAS) operation is provided by atomic_
cmpxchg (). Both of these return the old value. Many additional atomic
RMW primitives are available in the Linux kernel, see the Documentation/
atomic_t.txt file in the Linux-kernel source tree.!*

This book’s CodeSamples API closely follows that of the Linux kernel.

4.3.6 Per-CPU Variables

The Linux kernel uses DEFINE_PER_CPU() to define a per-CPU variable,
this_cpu_ptr() to form a reference to this CPU’s instance of a given
per-CPU variable, per_cpu() to access a specified CPU’s instance of a

14 As of Linux kernel v5.11.

104

Listing 4.30: Per-Thread-Variable API

DEFINE_PER_THREAD(type, name)
DECLARE_PER_THREAD (type, name)
per_thread(name, thread)
__get_thread_var (name)
init_per_thread(name, v)

given per-CPU variable, along with many other special-purpose per-CPU
operations.

Listing 4.30 shows this book’s per-thread-variable API, which is patterned
after the Linux kernel’s per-CPU-variable API. This API provides the per-
thread equivalent of global variables. Although this APl is, strictly speaking,
not necessary, ! it can provide a good userspace analogy to Linux kernel
code.

Quick Quiz 4.33: How could you work around the lack of a per-thread-variable
API on systems that do not provide it? H

4.3.6.1 DEFINE_PER_THREAD()

The DEFINE_PER_THREAD () primitive defines a per-thread variable. Un-
fortunately, it is not possible to provide an initializer in the way permitted
by the Linux kernel’s DEFINE_PER_CPU() primitive, but there is an init_
per_thread () primitive that permits easy runtime initialization.

4.3.6.2 DECLARE_PER_THREAD ()

The DECLARE_PER_THREAD () primitive is a declaration in the C sense, as
opposed to a definition. Thus, a DECLARE_PER_THREAD () primitive may
be used to access a per-thread variable defined in some other file.

4.3.6.3 per_thread()

The per_thread () primitive accesses the specified thread’s variable.

15 You could instead use __thread or _Thread_local.

105

4.3.6.4 __get_thread_var()

The __get_thread_var () primitive accesses the current thread’s variable.

4.3.6.5 init_per_thread()

The init_per_thread() primitive sets all threads’ instances of the spec-
ified variable to the specified value. The Linux kernel accomplishes this
via normal C initialization, relying in clever use of linker scripts and code
executed during the CPU-online process.

4.3.6.6 Usage Example

Suppose that we have a counter that is incremented very frequently but
read out quite rarely. As will become clear in Section 5.2, it is helpful to
implement such a counter using a per-thread variable. Such a variable can
be defined as follows:

’DEFINE_PER_THREAD(int, counter) ;

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as follows:

p_counter = &__get_thread_var(counter) ;
WRITE_ONCE (xp_counter, *p_counter + 1);

The value of the counter is then the sum of its instances. A snapshot of
the value of the counter can thus be collected as follows:

for_each_thread(t)
sum += READ_ONCE(per_thread(counter, t));

Again, it is possible to gain a similar effect using other mechanisms, but
per-thread variables combine convenience and high performance, as will be
shown in more detail in Section 5.2.

106

4.4 The Right Tool for the Job: How to Choose?

If you get stuck, change your tools; it may free your
thinking.

Paul Arden, abbreviated

As arough rule of thumb, use the simplest tool that will get the job done. If
you can, simply program sequentially. If that is insufficient, try using a shell
script to mediate parallelism. If the resulting shell-script fork ()/exec ()
overhead (about 480 microseconds for a minimal C program on an Intel
Core Duo laptop) is too large, try using the C-language fork () and wait ()
primitives. If the overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might need to use the
POSIX threading primitives, choosing the appropriate locking and/or atomic-
operation primitives. If the overhead of the POSIX threading primitives
(typically sub-microsecond) is too great, then the primitives introduced in
Chapter 9 may be required. Of course, the actual overheads will depend
not only on your hardware, but most critically on the manner in which
you use the primitives. Furthermore, always remember that inter-process
communication and message-passing can be good alternatives to shared-
memory multithreaded execution, especially when your code makes good
use of the design principles called out in Chapter 6.

Quick Quiz 4.34: Wouldn’t the shell normally use vfork () rather than fork () ?
[|

Because concurrency was added to the C standard several decades after
the C language was first used to build concurrent systems, there are a number
of ways of concurrently accessing shared variables. All else being equal,
the C11 standard operations described in Section 4.2.6 should be your first
stop. If you need to access a given shared variable both with plain accesses
and atomically, then the modern GCC atomics described in Section 4.2.7
might work well for you. If you are working on an old codebase that uses
the classic GCC __sync API, then you should review Section 4.2.5 as well
as the relevant GCC documentation. If you are working on the Linux kernel

107

or similar codebase that combines use of the volatile keyword with inline
assembly, or if you need dependencies to provide ordering, look at the
material presented in Section 4.3.4 as well as that in Chapter 15.

Whatever approach you take, please keep in mind that randomly hacking
multi-threaded code is a spectacularly bad idea, especially given that shared-
memory parallel systems use your own intelligence against you: The smarter
you are, the deeper a hole you will dig for yourself before you realize that
you are in trouble [Pok16]. Therefore, it is necessary to make the right
design choices as well as the correct choice of individual primitives, as will
be discussed at length in subsequent chapters.

108

Chapter 5
Counting

Aseasyas 1,2, 3!

Unknown

Counting is perhaps the simplest and most natural thing a computer can
do. However, counting efficiently and scalably on a large shared-memory
multiprocessor can be quite challenging. Furthermore, the simplicity of
the underlying concept of counting allows us to explore the fundamental
issues of concurrency without the distractions of elaborate data structures
or complex synchronization primitives. Counting therefore provides an
excellent introduction to parallel programming.

This chapter covers a number of special cases for which there are simple,
fast, and scalable counting algorithms. But first, let us find out how much
you already know about concurrent counting.

Quick Quiz 5.1: Why should efficient and scalable counting be hard??? After
all, computers have special hardware for the sole purpose of doing counting!!!

Quick Quiz 5.2: Network-packet counting problem. Suppose that you need
to collect statistics on the number of networking packets transmitted and received.
Packets might be transmitted or received by any CPU on the system. Suppose
further that your system is capable of handling millions of packets per second per
CPU, and that a systems-monitoring package reads the count every five seconds.
How would you implement this counter? H

Quick Quiz 5.3: Approximate structure-allocation limit problem. Suppose
that you need to maintain a count of the number of structures allocated in order
to fail any allocations once the number of structures in use exceeds a limit (say,
10,000). Suppose further that the structures are short-lived, the limit is rarely
exceeded, and a “sloppy” approximate limit is acceptable.

109

Quick Quiz 5.4: Exact structure-allocation limit problem. Suppose that you
need to maintain a count of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds an exact limit (again, say
10,000). Suppose further that these structures are short-lived, and that the limit
is rarely exceeded, that there is almost always at least one structure in use, and
suppose further still that it is necessary to know exactly when this counter reaches
zero, for example, in order to free up some memory that is not required unless
there is at least one structure in use. W

Quick Quiz 5.5: Removable I/O device access-count problem. Suppose that
you need to maintain a reference count on a heavily used removable mass-storage
device, so that you can tell the user when it is safe to remove the device. As usual,
the user indicates a desire to remove the device, and the system tells the user when
it is safe to do so. H

Section 5.1 shows why counting is non-trivial. Sections 5.2 and 5.3
investigate network-packet counting and approximate structure-allocation
limits, respectively. Section 5.4 takes on exact structure-allocation limits.
Finally, Section 5.5 presents performance measurements and discussion.

Sections 5.1 and 5.2 contain introductory material, while the remaining
sections are more advanced.

5.1 Why Isn’t Concurrent Counting Trivial?

Seek simplicity, and distrust it.

Alfred North Whitehead

Let’s start with something simple, for example, the straightforward use of
arithmetic shown in Listing 5.1 (count_nonatomic.c). Here, we have a
counter on line 1, we increment it on line 5, and we read out its value on
line 10. What could be simpler?

Quick Quiz5.6: One thing that could be simpler is ++ instead of that concatenation
of READ_ONCE () and WRITE_ONCE(). Why all that extra typing??? H

Listing 5.1: Just Count!

unsigned long counter = 0;

1

2

3 static __inline__ void inc_count(void)

4 1

5 WRITE_ONCE(counter, READ_ONCE(counter) + 1);
6 }

7

8 static __inline__ unsigned long read_count(void)
9 {

10 return READ_ONCE(counter);

1}

Listing 5.2: Just Count Atomically!
atomic_t counter = ATOMIC_INIT(O);

1

2

3 static __inline__ void inc_count(void)
4 {

5 atomic_inc(&counter) ;

6 }

7

8 static __inline__ long read_count(void)
9 {

10 return atomic_read(&counter);
1 r

This approach has the additional advantage of being blazingly fast if you
are doing lots of reading and almost no incrementing, and on small systems,
the performance is excellent.

There is just one large fly in the ointment: This approach can lose counts.
On my six-core x86 laptop, a short run invoked inc_count () 285,824,000
times, but the final value of the counter was only 35,385,525. Although
approximation does have a large place in computing, loss of 87 % of the
counts is a bit excessive.

Quick Quiz 5.7: But can’t a smart compiler prove that line 5 of Listing 5.1 is
equivalent to the ++ operator and produce an x86 add-to-memory instruction?
And won’t the CPU cache cause this to be atomic? B

Quick Quiz 5.8: The 8-figure accuracy on the number of failures indicates that
you really did test this. Why would it be necessary to test such a trivial program,
especially when the bug is easily seen by inspection? H

111
100000

10000

N

1000

100

Time Per Increment (ns)

—_
o
LU L B

1 L Ly L

~— o o
~ o

—

Number of CPUs (Threads)

Figure 5.1: Atomic Increment Scalability on x86

The straightforward way to count accurately is to use atomic operations,
as shown in Listing 5.2 (count_atomic.c). Line 1 defines an atomic
variable, line 5 atomically increments it, and line 10 reads it out. Because
this is atomic, it keeps perfect count. However, it is slower: On my six-core
x86 laptop, it is more than twenty times slower than non-atomic increment,
even when only a single thread is incrementing.'

This poor performance should not be a surprise, given the discussion
in Chapter 3, nor should it be a surprise that the performance of atomic
increment gets slower as the number of CPUs and threads increase, as shown
in Figure 5.1. In this figure, the horizontal dashed line resting on the x axis
is the ideal performance that would be achieved by a perfectly scalable
algorithm: With such an algorithm, a given increment would incur the same
overhead that it would in a single-threaded program. Atomic increment of

! Interestingly enough, non-atomically incrementing a counter will advance the counter
more quickly than atomically incrementing the counter. Of course, if your only goal is to make
the counter increase quickly, an easier approach is to simply assign a large value to the counter.
Nevertheless, there is likely to be a role for algorithms that use carefully relaxed notions of
correctness in order to gain greater performance and scalability [And91, ACMSO03, Rinl13,
Ungll].

112

[T | ks I
lCQc\h:t JCache Cachel JCacDaJ

)n@pcm\pect Intepcm\px
@ﬁche{]Cache Cache{]Cac?ﬁg
CPU4 CRUS ceyel| [leeud

Figure 5.2: Data Flow For Global Atomic Increment

a single global variable is clearly decidedly non-ideal, and gets multiple
orders of magnitude worse with additional CPUs.

Quick Quiz 5.9: Why doesn’t the horizontal dashed line on the x axis meet the
diagonal line atx = 17 W

Quick Quiz 5.10: But atomic increment is still pretty fast. And incrementing a
single variable in a tight loop sounds pretty unrealistic to me, after all, most of the
program’s execution should be devoted to actually doing work, not accounting for
the work it has done! Why should I care about making this go faster? H

For another perspective on global atomic increment, consider Figure 5.2.
In order for each CPU to get a chance to increment a given global variable,
the cache line containing that variable must circulate among all the CPUs,
as shown by the red arrows. Such circulation will take significant time,
resulting in the poor performance seen in Figure 5.1, which might be thought
of as shown in Figure 5.3. The following sections discuss high-performance
counting, which avoids the delays inherent in such circulation.

Quick Quiz 5.11: But why can’t CPU designers simply ship the addition
operation to the data, avoiding the need to circulate the cache line containing the
global variable being incremented? H

One one thousand.
Two one thousand.
Three one thousand...

Figure 5.3: Waiting to Count

5.2 Statistical Counters

Facts are stubborn things, but statistics are pliable.

Mark Twain

This section covers the common special case of statistical counters, where
the count is updated extremely frequently and the value is read out rarely,
if ever. These will be used to solve the network-packet counting problem
posed in Quick Quiz 5.2.

5.2.1 Design

Statistical counting is typically handled by providing a counter per thread
(or CPU, when running in the kernel), so that each thread updates its own
counter, as was foreshadowed in Section 4.3.6 on page 103. The aggregate
value of the counters is read out by simply summing up all of the threads’
counters, relying on the commutative and associative properties of addition.

114

Listing 5.3: Array-Based Per-Thread Statistical Counters
DEFINE_PER_THREAD (unsigned long, counter);

1

2

3 static __inline__ void inc_count(void)

4+ 1

5 unsigned long *p_counter = &__get_thread_var(counter);
6

7 WRITE_ONCE(*p_counter, *p_counter + 1);

8 }

9
10 static __inline__ unsigned long read_count (void)

n A{

12 int t;

13 unsigned long sum = 0;

14

15 for_each_thread(t)

16 sum += READ_ONCE(per_thread(counter, t));
17 return sum;

18 ¥

This is an example of the Data Ownership pattern that will be introduced in
Section 6.3.4 on page 194.

Quick Quiz 5.12: But doesn’t the fact that C’s “integers” are limited in size
complicate things? W

5.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate an array with one
element per thread (presumably cache aligned and padded to avoid false
sharing).

[Quick Quiz 5.13: An array??? But doesn’t that limit the number of threads? .]

Such an array can be wrapped into per-thread primitives, as shown in
Listing 5.3 (count_stat.c). Line 1 defines an array containing a set of
per-thread counters of type unsigned long named, creatively enough,
counter.

Lines 3-8 show a function that increments the counters, using the __
get_thread_var() primitive to locate the currently running thread’s
element of the counter array. Because this element is modified only by the

115

corresponding thread, non-atomic increment suffices. However, this code
uses WRITE_ONCE() to prevent destructive compiler optimizations. For
but one example, the compiler is within its rights to use a to-be-stored-to
location as temporary storage, thus writing what would be for all intents
and purposes garbage to that location just before doing the desired store.
This could of course be rather confusing to anything attempting to read out
the count. The use of WRITE_ONCE () prevents this optimization and others
besides.

[Quick Quiz 5.14: What other nasty optimizations could GCC apply? W J

Lines 10-18 show a function that reads out the aggregate value of the
counter, using the for_each_thread () primitive to iterate over the list of
currently running threads, and using the per_thread () primitive to fetch
the specified thread’s counter. This code also uses READ_ONCE () to ensure
that the compiler doesn’t optimize these loads into oblivion. For but one
example, a pair of consecutive calls to read_count () might be inlined,
and an intrepid optimizer might notice that the same locations were being
summed and thus incorrectly conclude that it would be simply wonderful to
sum them once and use the resulting value twice. This sort of optimization
might be rather frustrating to people expecting later read_count () calls
to account for the activities of other threads. The use of READ_ONCE ()
prevents this optimization and others besides.

Quick Quiz 5.15: How does the per-thread counter variable in Listing 5.3 get
initialized? W

Quick Quiz 5.16: How is the code in Listing 5.3 supposed to permit more than
one counter? W

This approach scales linearly with increasing number of updater threads
invoking inc_count (). As is shown by the green arrows on each CPU in
Figure 5.4, the reason for this is that each CPU can make rapid progress
incrementing its thread’s variable, without any expensive cross-system
communication. As such, this section solves the network-packet counting
problem presented at the beginning of this chapter.

116

i

ICachel Cachel Cachel
Interconnect Interconnect
=

=

Memory e’ System Interconnect }e Memory

.

AN
Interconnect Interconnect

/%

N

wdaclie wdaclie Ldllie wdllie
G4 GBUS GaU 8 el Z

Figure 5.4: Data Flow For Per-Thread Increment

Quick Quiz 5.17: The read operation takes time to sum up the per-thread values,
and during that time, the counter could well be changing. This means that the
value returned by read_count () in Listing 5.3 will not necessarily be exact.
Assume that the counter is being incremented at rate » counts per unit time, and
that read_count () ’s execution consumes 4 units of time. What is the expected
error in the return value? M

However, many implementations provide cheaper mechanisms for per-
thread data that are free from arbitrary array-size limits. This is the topic of
the next section.

5.2.3 Per-Thread-Variable-Based Implementation

The C language, since C11, features a _Thread_local storage class that
provides per-thread storage.> This can be used as shown in Listing 5.4
(count_end. c) to implement a statistical counter that not only scales well
and avoids arbitrary thread-number limits, but that also incurs little or

2 gece provides its own __thread storage class, which was used in previous versions of
this book. The two methods for specifying a thread-local variable are interchangeable when
using GCC.

117

no performance penalty to incrementers compared to simple non-atomic
increment.

Lines 1-4 define needed variables: counter is the per-thread counter
variable, the counterp [] array allows threads to access each others’ coun-
ters, finalcount accumulates the total as individual threads exit, and
final_mutex coordinates between threads accumulating the total value of
the counter and exiting threads.

Quick Quiz 5.18: Doesn’t that explicit counterp array in Listing 5.4 reimpose
an arbitrary limit on the number of threads? Why doesn’t the C language provide
a per_thread() interface, similar to the Linux kernel’s per_cpu() primitive,
to allow threads to more easily access each others’ per-thread variables? M

The inc_count () function used by updaters is quite simple, as can be
seen on lines 6-9.

The read_count () function used by readers is a bit more complex.
Line 16 acquires a lock to exclude exiting threads, and line 21 releases it.
Line 17 initializes the sum to the count accumulated by those threads that
have already exited, and lines 18-20 sum the counts being accumulated by
threads currently running. Finally, line 22 returns the sum.

Quick Quiz 5.19: Doesn’t the check for NULL on line 19 of Listing 5.4 add extra
branch mispredictions? Why not have a variable set permanently to zero, and point
unused counter-pointers to that variable rather than setting them to NULL? W

Quick Quiz 5.20: Why on earth do we need something as heavyweight as a lock
guarding the summation in the function read_count () in Listing 5.4? H

Lines 25-32 show the count_register_thread() function, which
must be called by each thread before its first use of this counter. This
function simply sets up this thread’s element of the counterp[] array to
point to its per-thread counter variable.

Quick Quiz 5.21: Why on earth do we need to acquire the lock in count_
register_thread() in Listing 5.47 Itis a single properly aligned machine-word
store to a location that no other thread is modifying, so it should be atomic anyway,
right? W

118

Listing 5.4: Per-Thread Statistical Counters
unsigned long _Thread_local counter 0;
unsigned long *counterp[NR_THREADS] = { NULL };
unsigned long finalcount = 0;

DEFINE_SPINLOCK (final_mutex) ;

static inline void inc_count(void)
{

WRITE_ONCE(counter, counter + 1);
}

Il static inline unsigned long read_count(void)

12 {

13 int t;

14 unsigned long sum;

15

16 spin_lock(&final_mutex);

17 sum = finalcount;

18 for_each_thread(t)

19 if (counterp[t] !'= NULL)

20 sum += READ_ONCE (*counterp[t]);
21 spin_unlock(&final_mutex) ;

2 return sum;

23 }

2%

25 void count_register_thread(unsigned long *p)
26 {

27 int idx = smp_thread_id();

28

29 spin_lock(&final_mutex);

30 counterp[idx] = &counter;

31 spin_unlock(&final_mutex) ;

2}

33

34 void count_unregister_thread(int nthreadsexpected)
35 {

36 int idx = smp_thread_id();

37

38 spin_lock(&final_mutex);

39 finalcount += counter;

40 counterp[idx] = NULL;

41 spin_unlock(&final_mutex) ;

119

Lines 3442 show the count_unregister_thread() function, which
must be called prior to exit by each thread that previously called count_
register_thread(). Line 38 acquires the lock, and line 41 releases
it, thus excluding any calls to read_count () as well as other calls to
count_unregister_thread(). Line 39 adds this thread’s counter to
the global finalcount, and then line 40 NULLs out its counterp[] array
entry. A subsequent call to read_count () will see the exiting thread’s
count in the global finalcount, and will skip the exiting thread when
sequencing through the counterp[] array, thus obtaining the correct total.

This approach gives updaters almost exactly the same performance as
a non-atomic add, and also scales linearly. On the other hand, concurrent
reads contend for a single global lock, and therefore perform poorly and
scale abysmally. However, this is not a problem for statistical counters,
where incrementing happens often and readout happens almost never. Of
course, this approach is considerably more complex than the array-based
scheme, due to the fact that a given thread’s per-thread variables vanish
when that thread exits.

Quick Quiz 5.22: Fine, but the Linux kernel doesn’t have to acquire a lock when
reading out the aggregate value of per-CPU counters. So why should user-space
code need to do this??? Wl

Both the array-based and _Thread_local-based approaches offer ex-
cellent update-side performance and scalability. However, these benefits
result in large read-side expense for large numbers of threads. The next
section shows one way to reduce read-side expense while still retaining the
update-side scalability.

5.2.4 Eventually Consistent Implementation

One way to retain update-side scalability while greatly improving read-
side performance is to weaken consistency requirements. The counting
algorithm in the previous section is guaranteed to return a value between
the value that an ideal counter would have taken on near the beginning
of read_count ()’s execution and that near the end of read_count ()’s
execution. Eventual consistency [Vog09] provides a weaker guarantee: In

120

absence of calls to inc_count (), calls to read_count () will eventually
return an accurate count.

We exploit eventual consistency by maintaining a global counter. However,
updaters only manipulate their per-thread counters. A separate thread is
provided to transfer counts from the per-thread counters to the global counter.
Readers simply access the value of the global counter. If updaters are active,
the value used by the readers will be out of date, however, once updates
cease, the global counter will eventually converge on the true value—hence
this approach qualifies as eventually consistent.

The implementation is shown in Listing 5.5 (count_stat_eventual.c).
Lines 1-2 show the per-thread variable and the global variable that track
the counter’s value, and line 3 shows stopflag which is used to coordinate
termination (for the case where we want to terminate the program with an
accurate counter value). The inc_count () function shown on lines 5-10 is
similar to its counterpart in Listing 5.3. The read_count () function shown
on lines 12—-15 simply returns the value of the global_count variable.

However, the count_init() function on lines 36-46 creates the
eventual () thread shown on lines 17-34, which cycles through all the
threads, summing the per-thread local counter and storing the sum to
the global_count variable. The eventual () thread waits an arbitrarily
chosen one millisecond between passes.

The count_cleanup () function on lines 48—54 coordinates termination.
The calls to smp_mb () here and in eventual () ensure that all updates to
global_count are visible to code following the call to count_cleanup ().

This approach gives extremely fast counter read-out while still supporting
linear counter-update scalability. However, this excellent read-side perfor-
mance and update-side scalability comes at the cost of the additional thread
running eventual ().

Quick Quiz 5.23: Why doesn’t inc_count () in Listing 5.5 need to use atomic
instructions? After all, we now have multiple threads accessing the per-thread
counters! H

Quick Quiz 5.24: Won'’t the single global thread in the function eventual () of
Listing 5.5 be just as severe a bottleneck as a global lock would be? W

Listing 5.5: Array-Based Per-Thread Eventually Consistent Counters

DEFINE_PER_THREAD (unsigned long, counter);

1

2 unsigned long global_count;

3 int stopflag;

4

5 static __inline__ void inc_count(void)

6 {

7 unsigned long *p_counter = &__get_thread_var(counter);
8

9 WRITE_ONCE(*p_counter, *p_counter + 1);
10 }

11

12 static __inline__ unsigned long read_count(void)
13 {

14 return READ_ONCE(global_count) ;

15}

16

17 void *eventual(void *arg)

18 {

19 int t;

20 unsigned long sum;

21

2 while (READ_ONCE(stopflag) < 3) {

23 sum = 0;

24 for_each_thread(t)

25 sum += READ_ONCE(per_thread(counter, t));
26 WRITE_ONCE(global_count, sum);
27 poll(NULL, 0, 1);

28 if (READ_ONCE(stopflag)) {

29 smp_mb () ;

30 WRITE_ONCE(stopflag, stopflag + 1);
31 }

32 }

33 return NULL;

34}

36 void count_init(void)

38 int en;

39 pthread_t tid;

40

41 en = pthread_create(&tid, NULL, eventual, NULL);
42 if (en != 0) {

43 fprintf(stderr, "pthread_create: %s\n", strerror(en));
44 exit (EXIT_FAILURE);

45 }

46 }

47

48 void count_cleanup(void)

49 {

50 WRITE_ONCE(stopflag, 1);

51 while (READ_ONCE(stopflag) < 3)

52 poll(NULL, 0, 1);

53 smp_mb () ;

122

Quick Quiz 5.25: Won'’t the estimate returned by read_count () in Listing 5.5
become increasingly inaccurate as the number of threads rises? H

Quick Quiz 5.26: Given that in the eventually-consistent algorithm shown
in Listing 5.5 both reads and updates have extremely low overhead and are
extremely scalable, why would anyone bother with the implementation described
in Section 5.2.2, given its costly read-side code? W

Quick Quiz 5.27: What is the accuracy of the estimate returned by read_
count () in Listing 5.5? W

5.2.5 Discussion

These three implementations show that it is possible to obtain near-
uniprocessor performance for statistical counters, despite running on a
parallel machine.

Quick Quiz 5.28: What fundamental difference is there between counting packets
and counting the total number of bytes in the packets, given that the packets vary
in size? W

Quick Quiz 5.29: Given that the reader must sum all the threads’ counters, this
counter-read operation could take a long time given large numbers of threads. Is
there any way that the increment operation can remain fast and scalable while
allowing readers to also enjoy not only reasonable performance and scalability,
but also good accuracy? W

Given what has been presented in this section, you should now be able to
answer the Quick Quiz about statistical counters for networking near the
beginning of this chapter.

5.3 Approximate Limit Counters

An approximate answer to the right problem is worth
a good deal more than an exact answer to an
approximate problem.

John Tukey

Another special case of counting involves limit-checking. For example,
as noted in the approximate structure-allocation limit problem in Quick
Quiz 5.3, suppose that you need to maintain a count of the number of
structures allocated in order to fail any allocations once the number of
structures in use exceeds a limit, in this case, 10,000. Suppose further that
these structures are short-lived, that this limit is rarely exceeded, and that
this limit is approximate in that it is OK to exceed it sometimes by some
bounded amount (see Section 5.4 if you instead need the limit to be exact).

5.3.1 Design

One possible design for limit counters is to divide the limit of 10,000 by
the number of threads, and give each thread a fixed pool of structures. For
example, given 100 threads, each thread would manage its own pool of
100 structures. This approach is simple, and in some cases works well, but
it does not handle the common case where a given structure is allocated
by one thread and freed by another [MS93]. On the one hand, if a given
thread takes credit for any structures it frees, then the thread doing most of
the allocating runs out of structures, while the threads doing most of the
freeing have lots of credits that they cannot use. On the other hand, if freed
structures are credited to the CPU that allocated them, it will be necessary
for CPUs to manipulate each others’ counters, which will require expensive
atomic instructions or other means of communicating between threads.’
In short, for many important workloads, we cannot fully partition the
counter. Given that partitioning the counters was what brought the excellent

3 That said, if each structure will always be freed by the same CPU (or thread) that
allocated it, then this simple partitioning approach works extremely well.

124

update-side performance for the three schemes discussed in Section 5.2, this
might be grounds for some pessimism. However, the eventually consistent
algorithm presented in Section 5.2.4 provides an interesting hint. Recall
that this algorithm kept two sets of books, a per-thread counter variable for
updaters and a global_count variable for readers, with an eventual ()
thread that periodically updated global_count to be eventually consistent
with the values of the per-thread counter. The per-thread counter perfectly
partitioned the counter value, while global_count kept the full value.

For limit counters, we can use a variation on this theme where we partially
partition the counter. For example, consider four threads with each having
not only a per-thread counter, but also a per-thread maximum value (call
it countermax).

But then what happens if a given thread needs to increment its counter,
but counter is equal to its countermax? The trick here is to move half of
that thread’s counter value to a globalcount, then increment counter.
For example, if a given thread’s counter and countermax variables were
both equal to 10, we do the following:

1. Acquire a global lock.

2. Add five to globalcount.

3. To balance out the addition, subtract five from this thread’s counter.
4. Release the global lock.

5. Increment this thread’s counter, resulting in a value of six.

Although this procedure still requires a global lock, that lock need only
be acquired once for every five increment operations, greatly reducing that
lock’s level of contention. We can reduce this contention as low as we
wish by increasing the value of countermax. However, the corresponding
penalty for increasing the value of countermax is reduced accuracy of
globalcount. To see this, note that on a four-CPU system, if countermax
is equal to ten, globalcount will be in error by at most 40 counts. In
contrast, if countermax is increased to 100, globalcount might be in
error by as much as 400 counts.

125

This raises the question of just how much we care about globalcount’s
deviation from the aggregate value of the counter, where this aggregate
value is the sum of globalcount and each thread’s counter variable. The
answer to this question depends on how far the aggregate value is from
the counter’s limit (call it globalcountmax). The larger the difference
between these two values, the larger countermax can be without risk of
exceeding the globalcountmax limit. This means that the value of a given
thread’s countermax variable can be set based on this difference. When far
from the limit, the countermax per-thread variables are set to large values
to optimize for performance and scalability, while when close to the limit,
these same variables are set to small values to minimize the error in the
checks against the globalcountmax limit.

This design is an example of parallel fastpath, which is an important
design pattern in which the common case executes with no expensive
instructions and no interactions between threads, but where occasional use
is also made of a more conservatively designed (and higher overhead) global
algorithm. This design pattern is covered in more detail in Section 6.4.

5.3.2 Simple Limit Counter Implementation

Listing 5.6 shows both the per-thread and global variables used by this
implementation. The per-thread counter and countermax variables are
the corresponding thread’s local counter and the upper bound on that counter,
respectively. The globalcountmax variable on line 3 contains the upper
bound for the aggregate counter, and the globalcount variable on line 4 is
the global counter. The sum of globalcount and each thread’s counter
gives the aggregate value of the overall counter. The globalreserve
variable on line 5 is at least the sum of all of the per-thread countermax
variables. The relationship among these variables is shown by Figure 5.5:

1. The sum of globalcount and globalreserve must be less than or
equal to globalcountmax.

2. The sum of all threads’ countermax values must be less than or equal
to globalreserve.

126

Listing 5.6: Simple Limit Counter Variables

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

R Y N TR

Figure 5.5: Simple Limit Counter Variable Relationships

3. Each thread’s counter must be less than or equal to that thread’s
countermax.

Each element of the counterp[] array references the corresponding
thread’s counter variable, and, finally, the gblcnt_mutex spinlock guards
all of the global variables, in other words, no thread is permitted to access or
modify any of the global variables unless it has acquired gblcnt_mutex.

v2022.09.25a

127

Listing 5.7: Simple Limit Counter Add, Subtract, and Read

1 static __inline__ int add_count(unsigned long delta)
2 {

3 if (countermax - counter >= delta) {

4 WRITE_ONCE(counter, counter + delta);
5 return 1;

6 T

7 spin_lock(&gblcnt_mutex);

8 globalize_count();

9 if (globalcountmax -

10 globalcount - globalreserve < delta) {
11 spin_unlock(&gblcnt_mutex) ;

12 return O;

13 }

14 globalcount += delta;

15 balance_count();

16 spin_unlock(&gblcnt_mutex) ;

17 return 1;

18}

19

20 static __inline__ int sub_count(unsigned long delta)
21 {

22 if (counter >= delta) {

23 WRITE_ONCE(counter, counter - delta);
24 return 1;

25 ¥

26 spin_lock(&gblcnt_mutex);

27 globalize_count();

28 if (globalcount < delta) {

29 spin_unlock(&gblcnt_mutex);

30 return 0;

31 i

32 globalcount -= delta;

33 balance_count();

34 spin_unlock(&gblcnt_mutex) ;

35 return 1;

36}

38 static __inline__ unsigned long read_count(void)

39 {

40 int t;

41 unsigned long sum;

42

43 spin_lock(&gblcnt_mutex) ;

44 sum = globalcount;

45 for_each_thread(t)

46 if (counterp[t] !'= NULL)

47 sum += READ_ONCE (*counterp[t]);
48 spin_unlock(&gblcnt_mutex) ;

49 return sum;

128

Listing 5.8: Intuitive Fastpath

3 if (counter + delta <= countermax) {

4 WRITE_ONCE(counter, counter + delta);
5 return 1;

6 }

Listing 5.7 shows the add_count (), sub_count (), and read_count ()
functions (count_1lim.c).

Quick Quiz 5.30: Why does Listing 5.7 provide add_count () and sub_
count () instead of the inc_count () and dec_count() interfaces show in
Section 5.27 M

Lines 1-18 show add_count (), which adds the specified value delta to
the counter. Line 3 checks to see if there is room for delta on this thread’s
counter, and, if so, line 4 adds it and line 5 returns success. This is the
add_counter () fastpath, and it does no atomic operations, references only
per-thread variables, and should not incur any cache misses.

Quick Quiz 5.31: What is with the strange form of the condition on line 3 of

Listing 5.7? Why not the more intuitive form of the fastpath shown in Listing 5.8?
|

If the test on line 3 fails, we must access global variables, and thus must
acquire gblcnt_mutex on line 7, which we release on line 11 in the failure
case or on line 16 in the success case. Line 8§ invokes globalize_count (),
shown in Listing 5.9, which clears the thread-local variables, adjusting
the global variables as needed, thus simplifying global processing. (But
don’t take my word for it, try coding it yourself!) Lines 9 and 10 check to
see if addition of delta can be accommodated, with the meaning of the
expression preceding the less-than sign shown in Figure 5.5 as the difference
in height of the two red (leftmost) bars. If the addition of delta cannot be
accommodated, then line 11 (as noted earlier) releases gblcnt_mutex and
line 12 returns indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta to globalcount,
and then line 15 invokes balance_count () (shown in Listing 5.9) in
order to update both the global and the per-thread variables. This call to
balance_count () will usually set this thread’s countermax to re-enable

129

the fastpath. Line 16 then releases gblcnt_mutex (again, as noted earlier),
and, finally, line 17 returns indicating success.

Quick Quiz 5.32: Why does globalize_count () zero the per-thread variables,
only to later call balance_count () to refill them in Listing 5.7? Why not just
leave the per-thread variables non-zero? W

Lines 20-36 show sub_count (), which subtracts the specified delta
from the counter. Line 22 checks to see if the per-thread counter can
accommodate this subtraction, and, if so, line 23 does the subtraction and
line 24 returns success. These lines form sub_count () ’s fastpath, and, as
with add_count (), this fastpath executes no costly operations.

If the fastpath cannot accommodate subtraction of delta, execution
proceeds to the slowpath on lines 26-35. Because the slowpath must access
global state, line 26 acquires gblcnt_mutex, which is released either by
line 29 (in case of failure) or by line 34 (in case of success). Line 27
invokes globalize_count (), shown in Listing 5.9, which again clears the
thread-local variables, adjusting the global variables as needed. Line 28
checks to see if the counter can accommodate subtracting delta, and, if
not, line 29 releases gblcnt_mutex (as noted earlier) and line 30 returns
failure.

Quick Quiz 5.33: Given that globalreserve counted against us in add_
count (), why doesn’t it count for us in sub_count () in Listing 5.7? H

Quick Quiz 5.34: Suppose that one thread invokes add_count () shown in
Listing 5.7, and then another thread invokes sub_count (). Won’t sub_count ()
return failure even though the value of the counter is non-zero? M

If, on the other hand, line 28 finds that the counter can accommodate
subtracting delta, we complete the slowpath. Line 32 does the subtraction
and then line 33 invokes balance_count () (shown in Listing 5.9) in order
to update both global and per-thread variables (hopefully re-enabling the
fastpath). Then line 34 releases gblcnt_mutex, and line 35 returns success.

Quick Quiz 5.35: Why have both add_count () and sub_count () in List-
ing 5.7? Why not simply pass a negative number to add_count()? W

130

Lines 38-50 show read_count (), which returns the aggregate value of
the counter. It acquires gblcnt_mutex on line 43 and releases it on line 48,
excluding global operations from add_count () and sub_count (), and,
as we will see, also excluding thread creation and exit. Line 44 initializes
local variable sum to the value of globalcount, and then the loop spanning
lines 45-47 sums the per-thread counter variables. Line 49 then returns
the sum.

Listing 5.9 shows a number of utility functions used by the add_count (),
sub_count (), and read_count () primitives shown in Listing 5.7.

Lines 1-7 show globalize_count (), which zeros the current thread’s
per-thread counters, adjusting the global variables appropriately. It is
important to note that this function does not change the aggregate value of the
counter, but instead changes how the counter’s current value is represented.
Line 3 adds the thread’s counter variable to globalcount, and line 4
zeroes counter. Similarly, line 5 subtracts the per-thread countermax
from globalreserve, and line 6 zeroes countermax. It is helpful to
refer to Figure 5.5 when reading both this function and balance_count (),
which is next.

Lines 9-19 show balance_count (), which is roughly speaking the
inverse of globalize_count (). This function’s job is to set the current
thread’s countermax variable to the largest value that avoids the risk of
the counter exceeding the globalcountmax limit. Changing the current
thread’s countermax variable of course requires corresponding adjust-
ments to counter, globalcount and globalreserve, as can be seen by
referring back to Figure 5.5. By doing this, balance_count () maximizes
use of add_count ()’s and sub_count ()’s low-overhead fastpaths. As
with globalize_count (), balance_count () is not permitted to change
the aggregate value of the counter.

Lines 11-13 compute this thread’s share of that portion of
globalcountmax that is not already covered by either globalcount
or globalreserve, and assign the computed quantity to this thread’s
countermax. Line 14 makes the corresponding adjustment to
globalreserve. Line 15 sets this thread’s counter to the middle of
the range from zero to countermax. Line 16 checks to see whether
globalcount can in fact accommodate this value of counter, and, if not,

Listing 5.9: Simple Limit Counter Utility Functions

| static __inline__ void globalize_count(void)
2 {

3 globalcount += counter;

4 counter = 0;

5 globalreserve -= countermax;

6 countermax = 0;

7}

8

9 static __inline__ void balance_count(void)
10 {

11 countermax = globalcountmax -

12 globalcount - globalreserve;
13 countermax /= num_online_threads();
14 globalreserve += countermax;

15 counter = countermax / 2;

16 if (counter > globalcount)

17 counter = globalcount;

18 globalcount -= counter;

19}

20

21 void count_register_thread(void)

2 {

23 int idx = smp_thread_id();

24

25 spin_lock(&gblcnt_mutex);

26 counterp[idx] = &counter;

27 spin_unlock(&gblcnt_mutex) ;

2% }

29
30 void count_unregister_thread(int nthreadsexpected)

31 {

32 int idx = smp_thread_id();
33

34 spin_lock(&gblcnt_mutex);

35 globalize_count();

36 counterp[idx] = NULL;

37 spin_unlock(&gblcnt_mutex) ;

132

globalize_count () balance_count ()

Figure 5.6: Schematic of Globalization and Balancing

line 17 decreases counter accordingly. Finally, in either case, line 18
makes the corresponding adjustment to globalcount.

Quick Quiz 5.36: Why set counter to countermax / 2 in line 15 of List-
ing 5.9? Wouldn’t it be simpler to just take countermax counts?

It is helpful to look at a schematic depicting how the relationship of
the counters changes with the execution of first globalize_count () and
then balance_count (), as shown in Figure 5.6. Time advances from left
to right, with the leftmost configuration roughly that of Figure 5.5. The
center configuration shows the relationship of these same counters after
globalize_count () is executed by thread 0. As can be seen from the
figure, thread 0’s counter (“c 0 in the figure) is added to globalcount,
while the value of globalreserve is reduced by this same amount. Both
thread 0’s counter and its countermax (“cm 0” in the figure) are reduced
to zero. The other three threads’ counters are unchanged. Note that this

v2022.09.25a

133

change did not affect the overall value of the counter, as indicated by the
bottommost dotted line connecting the leftmost and center configurations.
In other words, the sum of globalcount and the four threads’ counter
variables is the same in both configurations. Similarly, this change did not
affect the sum of globalcount and globalreserve, as indicated by the
upper dotted line.

The rightmost configuration shows the relationship of these counters
after balance_count () is executed, again by thread 0. One-quarter of
the remaining count, denoted by the vertical line extending up from all
three configurations, is added to thread 0’s countermax and half of that
to thread 0’s counter. The amount added to thread 0’s counter is also
subtracted from globalcount in order to avoid changing the overall value
of the counter (which is again the sum of globalcount and the three
threads’ counter variables), again as indicated by the lowermost of the
two dotted lines connecting the center and rightmost configurations. The
globalreserve variable is also adjusted so that this variable remains equal
to the sum of the four threads’ countermax variables. Because thread 0’s
counter is less than its countermax, thread O can once again increment
the counter locally.

Quick Quiz 5.37: In Figure 5.6, even though a quarter of the remaining count
up to the limit is assigned to thread 0, only an eighth of the remaining count is
consumed, as indicated by the uppermost dotted line connecting the center and the
rightmost configurations. Why is that?

Lines 21-28 show count_register_thread(), which sets up state
for newly created threads. This function simply installs a pointer to the
newly created thread’s counter variable into the corresponding entry of
the counterp[] array under the protection of gblcnt_mutex.

Finally, lines 30-38 show count_unregister_thread(), which tears
down state for a soon-to-be-exiting thread. Line 34 acquires gblcnt_mutex
and line 37 releases it. Line 35 invokes globalize_count () to clear out
this thread’s counter state, and line 36 clears this thread’s entry in the
counterp[] array.

Listing 5.10: Approximate Limit Counter Variables

1 unsigned long __thread counter = 0;

2 unsigned long __thread countermax = 0;

3 unsigned long globalcountmax = 10000;

4 unsigned long globalcount = 0;

5 unsigned long globalreserve = 0;

6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLUCK(gblcnt _mutex);

8 #define MAX_COUNTERMAX 100

5.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate values are near zero,
with some overhead due to the comparison and branch in both add_
count ()’s and sub_count () ’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count () can fail even when the
aggregate value of the counter is nowhere near globalcountmax. Similarly,
sub_count () can fail even when the aggregate value of the counter is
nowhere near zero.

In many cases, this is unacceptable. Even if the globalcountmax is
intended to be an approximate limit, there is usually a limit to exactly how
much approximation can be tolerated. One way to limit the degree of
approximation is to impose an upper limit on the value of the per-thread
countermax instances. This task is undertaken in the next section.

5.3.4 Approximate Limit Counter Implementation

Because this implementation (count_lim_app.c) is quite similar to that
in the previous section (Listings 5.6, 5.7, and 5.9), only the changes are
shown here. Listing 5.10 is identical to Listing 5.6, with the addition
of MAX_COUNTERMAX, which sets the maximum permissible value of the
per-thread countermax variable.

Similarly, Listing 5.11 is identical to the balance_count () function
in Listing 5.9, with the addition of lines 6 and 7, which enforce the MAX _
COUNTERMAX limit on the per-thread countermax variable.

Listing 5.11: Approximate Limit Counter Balancing

1 static void balance_count(void)

2 {

3 countermax = globalcountmax -

4 globalcount - globalreserve;
5 countermax /= num_online_threads();

6 if (countermax > MAX_COUNTERMAX)

7 countermax = MAX_COUNTERMAX;

8 globalreserve += countermax;

9 counter = countermax / 2;

10 if (counter > globalcount)

11 counter = globalcount;
12 globalcount -= counter;

13}

5.3.5 Approximate Limit Counter Discussion

These changes greatly reduce the limit inaccuracy seen in the previous
version, but present another problem: Any given value of MAX_COUNTERMAX
will cause a workload-dependent fraction of accesses to fall off the fastpath.
As the number of threads increase, non-fastpath execution will become
both a performance and a scalability problem. However, we will defer this
problem and turn instead to counters with exact limits.

5.4 Exact Limit Counters

Exactitude can be expensive. Spend wisely.

Unknown

To solve the exact structure-allocation limit problem noted in Quick Quiz 5.4,
we need a limit counter that can tell exactly when its limits are exceeded.
One way of implementing such a limit counter is to cause threads that
have reserved counts to give them up. One way to do this is to use atomic
instructions. Of course, atomic instructions will slow down the fastpath, but
on the other hand, it would be silly not to at least give them a try.

136

5.4.1 Atomic Limit Counter Implementation

Unfortunately, if one thread is to safely remove counts from another thread,
both threads will need to atomically manipulate that thread’s counter and
countermax variables. The usual way to do this is to combine these two
variables into a single variable, for example, given a 32-bit variable, using
the high-order 16 bits to represent counter and the low-order 16 bits to
represent countermax.

Quick Quiz 5.38: Why is it necessary to atomically manipulate the thread’s
counter and countermax variables as a unit? Wouldn’t it be good enough to
atomically manipulate them individually? W

The variables and access functions for a simple atomic limit counter
are shown in Listing 5.12 (count_lim_atomic.c). The counter and
countermax variables in earlier algorithms are combined into the single
variable counterandmax shown on line 1, with counter in the upper half
and countermax in the lower half. This variable is of type atomic_t,
which has an underlying representation of int.

Lines 2—6 show the definitions for globalcountmax, globalcount,
globalreserve, counterp, and gblcnt_mutex, all of which take on
roles similar to their counterparts in Listing 5.10. Line 7 defines CM_BITS,
which gives the number of bits in each half of counterandmax, and line 8
defines MAX_COUNTERMAX, which gives the maximum value that may be
held in either half of counterandmax.

Quick Quiz 5.39: In what way does line 7 of Listing 5.12 violate the C standard?
|

Lines 1015 show the split_counterandmax_int () function, which,
when given the underlying int from the atomic_t counterandmax vari-
able, splits it into its counter (c) and countermax (cm) components.
Line 13 isolates the most-significant half of this int, placing the result as
specified by argument c, and line 14 isolates the least-significant half of this
int, placing the result as specified by argument cm.

Lines 17-24 show the split_counterandmax () function, which picks
up the underlying int from the specified variable on line 20, stores it

Listing 5.12: Atomic Limit Counter Variables and Access Functions

atomic_t __thread counterandmax = ATOMIC_INIT(O);
unsigned long globalcountmax = 1 << 25;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

atomic_t *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

#define CM_BITS (sizeof (atomic_t) * 4)

#define MAX_COUNTERMAX ((1 << CM_BITS) - 1)

static __inline__ void
split_counterandmax_int(int cami, int *c, int *cm)
{
*c = (cami >> CM_BITS) & MAX_COUNTERMAX;
*cm = cami & MAX_COUNTERMAX;

}

static __inline__ void
split_counterandmax(atomic_t *cam, int *old, int *c, int *cm)
{

unsigned int cami = atomic_read(cam);

*0ld = cami;
split_counterandmax_int(cami, c, cm);

}

static __inline_

p -

int merge_counterandmax(int c, int cm)

unsigned int camij;

cami = (c << CM_BITS) | cm;
return ((int)cami);

138

as specified by the old argument on line 22, and then invokes split_
counterandmax_int () to split it on line 23.

Quick Quiz 5.40: Given that there is only one counterandmax variable, why
bother passing in a pointer to it on line 18 of Listing 5.12? H

Lines 26-32 show the merge_counterandmax () function, which can
be thought of as the inverse of split_counterandmax(). Line 30 merges
the counter and countermax values passed in ¢ and cm, respectively, and
returns the result.

Quick Quiz 5.41: Why does merge_counterandmax () in Listing 5.12 return
an int rather than storing directly into an atomic_t? W

Listing 5.13 shows the add_count () and sub_count () functions.

Lines 1-32 show add_count (), whose fastpath spans lines 8-15, with
the remainder of the function being the slowpath. Lines 8—14 of the fastpath
form a compare-and-swap (CAS) loop, with the atomic_cmpxchg() prim-
itive on lines 13—14 performing the actual CAS. Line 9 splits the current
thread’s counterandmax variable into its counter (in c) and countermax
(in cm) components, while placing the underlying int into old. Line 10
checks whether the amount delta can be accommodated locally (taking
care to avoid integer overflow), and if not, line 11 transfers to the slow-
path. Otherwise, line 12 combines an updated counter value with the
original countermax value into new. The atomic_cmpxchg() primitive
on lines 13—14 then atomically compares this thread’s counterandmax
variable to old, updating its value to new if the comparison succeeds. If
the comparison succeeds, line 15 returns success, otherwise, execution
continues in the loop at line 8.

Quick Quiz 5.42: Yecch! Why the ugly goto on line 11 of Listing 5.13? Haven’t
you heard of the break statement??? H

Quick Quiz 5.43: Why would the atomic_cmpxchg() primitive at lines 13-14
of Listing 5.13 ever fail? After all, we picked up its old value on line 9 and have
not changed it! W

Lines 16-31 of Listing 5.13 show add_count ()’s slowpath, which is
protected by gblcnt_mutex, which is acquired on line 17 and released

Listing 5.13: Atomic Limit Counter Add and Subtract

1
2
3
4
5
6
7
8
9

i
{

s.

i

{

nt add_count (unsigned long delta)

int c;

int cm;
int old;
int new;

split_counterandmax (&counterandmax, &old, &c, &cm);
if (delta > MAX_COUNTERMAX || ¢ + delta > cm)
goto slowpath;
new = merge_counterandmax(c + delta, cm);
} while (atomic_cmpxchg(&counterandmax,
old, new) != old);
return 1;
lowpath:
spin_lock(&gblcnt_mutex) ;
globalize_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
flush_local_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;

globalcount += delta;
balance_count () ;
spin_unlock(&gblcnt_mutex) ;
return 1;

nt sub_count (unsigned long delta)

int c;

int cm;
int old;
int new;

do {
split_counterandmax (&counterandmax, &old, &c, &cm);
if (delta > c)
goto slowpath;
new = merge_counterandmax(c - delta, cm);
} while (atomic_cmpxchg(&counterandmax,
old, new) != old);
return 1;
slowpath:
spin_lock(&gblcnt_mutex) ;
globalize_count();
if (globalcount < delta) {
flush_local_count();
if (globalcount < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;

globalcount -= delta;
balance_count();
spin_unlock(&gblcnt_mutex) ;
return 1;

Listing 5.14: Atomic Limit Counter Read

| unsigned long read_count(void)

2 {

3 int c;

4 int cm;

5 int old;

6 int t;

7 unsigned long sum;

8

9 spin_lock(&gblcnt_mutex) ;

10 sum = globalcount;

11 for_each_thread(t)

12 if (counterp[t] != NULL) {
13 split_counterandmax (counterp[t], &old, &c, &cm);
14 sum += c;

15 }

16 spin_unlock(&gblcnt_mutex) ;

17 return sum;

18}

on lines 24 and 30. Line 18 invokes globalize_count (), which moves
this thread’s state to the global counters. Lines 19-20 check whether the
delta value can be accommodated by the current global state, and, if not,
line 21 invokes flush_local_count () to flush all threads’ local state
to the global counters, and then lines 22-23 recheck whether delta can
be accommodated. If, after all that, the addition of delta still cannot be
accommodated, then line 24 releases gblcnt_mutex (as noted earlier), and
then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter, line 29 spreads
counts to the local state if appropriate, line 30 releases gblcnt_mutex
(again, as noted earlier), and finally, line 31 returns success.

Lines 34-63 of Listing 5.13 show sub_count (), which is structured
similarly to add_count (), having a fastpath on lines 41-48 and a slowpath
on lines 49-62. A line-by-line analysis of this function is left as an exercise
to the reader.

Listing 5.14 shows read_count (). Line 9 acquires gblcnt_mutex
and line 16 releases it. Line 10 initializes local variable sum to the value
of globalcount, and the loop spanning lines 11-15 adds the per-thread
counters to this sum, isolating each per-thread counter using split_
counterandmax on line 13. Finally, line 17 returns the sum.

141

Listing 5.15: Atomic Limit Counter Utility Functions 1

1 static void globalize_count(void)

2 {

3 int c;

4 int cm;

5 int old;

6

7 split_counterandmax (&counterandmax, &old, &c, &cm);
8 globalcount += c;

9 globalreserve -= cm;

10 old = merge_counterandmax(0, 0);

11 atomic_set (&counterandmax, o0ld);
12}

13

14 static void flush_local_count(void)

15 {

16 int c;

17 int cm;

18 int old;

19 int t;

20 int zero;

21

2 if (globalreserve == 0)

23 return;

24 zero = merge_counterandmax(0, 0);

25 for_each_thread(t)

26 if (counterp[t] != NULL) {
27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int(old, &c, &cm);
29 globalcount += c;

30 globalreserve -= cm;
31 }

142

Listing 5.16: Atomic Limit Counter Utility Functions 2

1
2
3
4
5
6
7
8
9

10
11

12

21
22
23

s
{

}

tatic void balance_count(void)

int c;

int cm;

int old;

unsigned long limit;

limit = globalcountmax - globalcount -
globalreserve;
limit /= num_online_threads();
if (limit > MAX_COUNTERMAX)
cm = MAX_COUNTERMAX;
else
cm = limit;
globalreserve += cm;
c=cm/ 2;
if (c > globalcount)
c = globalcount;
globalcount -= c;
old = merge_counterandmax(c, cm);
atomic_set (&counterandmax, old);

24 void count_register_thread(void)

25

33
34

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
counterp[idx] = &counterandmax;
spin_unlock(&gblcnt_mutex) ;

void count_unregister_thread(int nthreadsexpected)

{

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
globalize_count();
counterp[idx] = NULL;
spin_unlock(&gblcnt_mutex) ;

143

Listings 5.15 and 5.16 show the utility functions globalize_count (),
flush_local_count(), balance_count (), count_register_
thread(), and count_unregister_thread(). The code for
globalize_count () is shown on lines 1-12 of Listing 5.15, and is similar
to that of previous algorithms, with the addition of line 7, which is now
required to split out counter and countermax from counterandmax.

The code for flush_local_count (), which moves all threads’ local
counter state to the global counter, is shown on lines 14-32. Line 22
checks to see if the value of globalreserve permits any per-thread counts,
and, if not, line 23 returns. Otherwise, line 24 initializes local variable
zero to a combined zeroed counter and countermax. The loop spanning
lines 25-31 sequences through each thread. Line 26 checks to see if the
current thread has counter state, and, if so, lines 27-30 move that state to the
global counters. Line 27 atomically fetches the current thread’s state while
replacing it with zero. Line 28 splits this state into its counter (in local
variable ¢) and countermax (in local variable cm) components. Line 29
adds this thread’s counter to globalcount, while line 30 subtracts this
thread’s countermax from globalreserve.

Quick Quiz 5.44: What stops a thread from simply refilling its counterandmax
variable immediately after flush_local_count () on line 14 of Listing 5.15
empties it? W

Quick Quiz 5.45: What prevents concurrent execution of the fastpath of
either add_count () or sub_count () from interfering with the counterandmax
variable while f1lush_local_count () is accessing it on line 27 of Listing 5.15?

Lines 1-22 on Listing 5.16 show the code for balance_count (), which
refills the calling thread’s local counterandmax variable. This function is
quite similar to that of the preceding algorithms, with changes required to han-
dle the merged counterandmax variable. Detailed analysis of the code is left
as an exercise for the reader, as it is with the count_register_thread()
function starting on line 24 and the count_unregister_thread() func-
tion starting on line 33.

144

Quick Quiz 5.46: Given that the atomic_set () primitive does a simple store
to the specified atomic_t, how can line 21 of balance_count () in Listing 5.16
work correctly in face of concurrent flush_local_count () updates to this
variable? H

The next section qualitatively evaluates this design.

5.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the counter to be run all
the way to either of its limits, but it does so at the expense of adding atomic
operations to the fastpaths, which slow down the fastpaths significantly on
some systems. Although some workloads might tolerate this slowdown, it
is worthwhile looking for algorithms with better write-side performance.
One such algorithm uses a signal handler to steal counts from other threads.
Because signal handlers run in the context of the signaled thread, atomic
operations are not necessary, as shown in the next section.

Quick Quiz 5.47: But signal handlers can be migrated to some other CPU while
running. Doesn’t this possibility require that atomic instructions and memory
barriers are required to reliably communicate between a thread and a signal handler
that interrupts that thread? H

5.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated only by the corre-
sponding thread, there will still need to be synchronization with the signal
handlers. This synchronization is provided by the state machine shown in
Figure 5.7.

The state machine starts out in the IDLE state, and when add_count () or
sub_count () find that the combination of the local thread’s count and the
global count cannot accommodate the request, the corresponding slowpath
sets each thread’s theft state to REQ (unless that thread has no count, in
which case it transitions directly to READY). Only the slowpath, which
holds the gblcnt_mutex lock, is permitted to transition from the IDLE

Figure 5.7: Signal-Theft State Machine

state, as indicated by the green color.* The slowpath then sends a signal to
each thread, and the corresponding signal handler checks the corresponding
thread’s theft and counting variables. If the theft state is not REQ,
then the signal handler is not permitted to change the state, and therefore
simply returns. Otherwise, if the counting variable is set, indicating that
the current thread’s fastpath is in progress, the signal handler sets the theft
state to ACK, otherwise to READY.

If the theft state is ACK, only the fastpath is permitted to change the
theft state, as indicated by the blue color. When the fastpath completes, it
sets the theft state to READY.

Once the slowpath sees a thread’s theft state is READY, the slowpath is
permitted to steal that thread’s count. The slowpath then sets that thread’s
theft state to IDLE.

4 For those with black-and-white versions of this book, IDLE and READY are green, REQ
is red, and ACK is blue.

146

Listing 5.17: Signal-Theft Limit Counter Data

#define THEFT_IDLE 0
#define THEFT_REQ 1
#define THEFT_ACK 2
#define THEFT_READY 3

int __thread theft = THEFT_IDLE;

int __thread counting = 0;

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;

10 unsigned long globalcountmax = 10000;

11 unsigned long globalcount = 0;

12 unsigned long globalreserve = 0;

13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };

16 DEFINE_SPINLOCK(gblcnt_mutex);

17 #define MAX_COUNTERMAX 100

® N w kW —

©

[Quick Quiz 5.48: In Figure 5.7, why is the REQ theft state colored red? M]

Quick Quiz 5.49: In Figure 5.7, what is the point of having separate REQ and
ACK theft states? Why not simplify the state machine by collapsing them into a
single REQACK state? Then whichever of the signal handler or the fastpath gets
there first could set the state to READY. W

5.4.4 Signal-Theft Limit Counter Implementation

Listing 5.17 (count_lim_sig.c) shows the data structures used by the
signal-theft based counter implementation. Lines 1-7 define the states and
values for the per-thread theft state machine described in the preceding
section. Lines 8—17 are similar to earlier implementations, with the addition
of lines 14 and 15 to allow remote access to a thread’s countermax and
theft variables, respectively.

Listing 5.18 shows the functions responsible for migrating counts between
per-thread variables and the global variables. Lines 1-7 show globalize_
count (), which is identical to earlier implementations. Lines 9—19 show
flush_local_count_sig(), which is the signal handler used in the theft
process. Lines 11 and 12 check to see if the theft state is REQ, and, if
not returns without change. Line 13 executes a memory barrier to ensure
that the sampling of the theft variable happens before any change to that

147

variable. Line 14 sets the theft state to ACK, and, if line 15 sees that this
thread’s fastpaths are not running, line 16 sets the theft state to READY.

Quick Quiz 5.50: In Listing 5.18’s function £lush_local_count_sig(), why
are there READ_ONCE() and WRITE_ONCE() wrappers around the uses of the
theft per-thread variable? M

Lines 21-49 show flush_local_count (), which is called from the
slowpath to flush all threads’ local counts. The loop spanning lines 26-34
advances the theft state for each thread that has local count, and also sends
that thread a signal. Line 27 skips any non-existent threads. Otherwise,
line 28 checks to see if the current thread holds any local count, and, if not,
line 29 sets the thread’s theft state to READY and line 30 skips to the next
thread. Otherwise, line 32 sets the thread’s theft state to REQ and line 33
sends the thread a signal.

Quick Quiz 5.51: In Listing 5.18, why is it safe for line 28 to directly access the
other thread’s countermax variable? W

Quick Quiz 5.52: In Listing 5.18, why doesn’t line 33 check for the current
thread sending itself a signal? M

Quick Quiz 5.53: The code shown in Listings 5.17 and 5.18 works with GCC and
POSIX. What would be required to make it also conform to the ISO C standard?
|

The loop spanning lines 35-48 waits until each thread reaches READY
state, then steals that thread’s count. Lines 36—37 skip any non-existent
threads, and the loop spanning lines 38—42 waits until the current thread’s
theft state becomes READY. Line 39 blocks for a millisecond to avoid
priority-inversion problems, and if line 40 determines that the thread’s
signal has not yet arrived, line 41 resends the signal. Execution reaches
line 43 when the thread’s theft state becomes READY, so lines 43—46 do
the thieving. Line 47 then sets the thread’s theft state back to IDLE.

[Quick Quiz 5.54: In Listing 5.18, why does line 41 resend the signal? W]

Lines 51-63 show balance_count (), which is similar to that of earlier
examples.

Listing 5.18: Signal-Theft Limit Counter Value-Migration Functions

1
2
3
4
5
6
7
8
9

10
11
12
13

51
52

53

s
{

}

s
{

}

tatic void globalize_count(void)

globalcount += counter;
counter = 0;

globalreserve -= countermax;
countermax = 0;

tatic void flush_local_count_sig(int unused)

if (READ_ONCE(theft) != THEFT_REQ)
return;

smp_mb () ;

WRITE_ONCE(theft, THEFT_ACK);

if (lcounting) {
WRITE_ONCE(theft, THEFT_READY);

}

smp_mb () ;

static void flush_local_count(void)

int t;
thread_id_t tid;

for_each_tid(t, tid)
if (theftp[t] != NULL) {

if (*countermaxp[t] == 0) {
WRITE_ONCE (*theftp[t], THEFT_READY);
continue;

}
WRITE_ONCE(*theftp[t], THEFT_REQ);
pthread_kill(tid, SIGUSR1);

}

for_each_tid(t, tid) {

if (theftp[t] == NULL)
continue;

while (READ_ONCE(xtheftp[t]) != THEFT_READY) {
poll(NULL, 0, 1);
if (READ_ONCE(*theftp[t]) == THEFT_REQ)

pthread_kill(tid, SIGUSR1);

globalcount += *counterp[t];
*counterp[t] 0;

globalreserve -= *countermaxpl[t];
*countermaxp[t] = 0;
WRITE_ONCE(*theftp[t], THEFT_IDLE);

static void balance_count(void)

{

countermax = globalcountmax - globalcount -
globalreserve;
countermax /= num_online_threads();
if (countermax > MAX_COUNTERMAX)
countermax = MAX_COUNTERMAX;
globalreserve += countermax;
counter = countermax / 2;
if (counter > globalcount)
counter = globalcount;
globalcount -= counter;

149

Listing 5.19: Signal-Theft Limit Counter Add Function

1 i
2 {
3
4
5
6
7
8
9
10

11

12

nt add_count (unsigned long delta)

int fastpath = 0;

WRITE_ONCE(counting, 1);
barrier();
if (READ_ONCE(theft) <= THEFT_REQ &&
countermax - counter >= delta) {
WRITE_ONCE(counter, counter + delta);
fastpath = 1;
}
barrier();
WRITE_ONCE(counting, 0);
barrier();
if (READ_ONCE(theft) == THEFT_ACK) {
smp_mb() ;
WRITE_ONCE(theft, THEFT_READY);
¥
if (fastpath)
return 1;
spin_lock(&gblcnt_mutex);
globalize_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
flush_local_count();
if (globalcountmax - globalcount -
globalreserve < delta) {
spin_unlock(&gblcnt_mutex) ;
return O;
}
}
globalcount += delta;
balance_count();
spin_unlock(&gblcnt_mutex) ;
return 1;

Listing 5.20: Signal-Theft Limit Counter Subtract Function

1 i
2 {
3
4
5
6
7
8
9

11

nt sub_count(unsigned long delta)

int fastpath = 0;

WRITE_ONCE(counting, 1);
barrier();
if (READ_ONCE(theft) <= THEFT_REQ &&
counter >= delta) {
WRITE_ONCE(counter, counter - delta);
fastpath = 1;
}
barrier();
WRITE_ONCE(counting, 0);
barrier();
if (READ_ONCE(theft) == THEFT_ACK) {
smp_mb () ;
WRITE_ONCE(theft, THEFT_READY);
}
if (fastpath)
return 1;
spin_lock(&gblcnt_mutex) ;
globalize_count();
if (globalcount < delta) {
flush_local_count();
if (globalcount < delta) {
spin_unlock(&gblcnt_mutex) ;
return 0;
}
}
globalcount -= delta;
balance_count();
spin_unlock(&gblcnt_mutex) ;
return 1;

Listing 5.21: Signal-Theft Limit Counter Read Function

| unsigned long read_count(void)

2 {

3 int t;

4 unsigned long sum;

5

6 spin_lock(&gblcnt_mutex);

7 sum = globalcount;

3 for_each_thread(t)

9 if (counterp[t] !'= NULL)
10 sum += READ_ONCE (*counterp[t]);
11 spin_unlock(&gblcnt_mutex) ;

12 return sum;

13}

Listing 5.19 shows the add_count () function. The fastpath spans
lines 5-20, and the slowpath lines 21-35. Line 5 sets the per-thread
counting variable to 1 so that any subsequent signal handlers interrupting
this thread will set the theft state to ACK rather than READY, allowing this
fastpath to complete properly. Line 6 prevents the compiler from reordering
any of the fastpath body to precede the setting of counting. Lines 7 and 8
check to see if the per-thread data can accommodate the add_count () and
if there is no ongoing theft in progress, and if so line 9 does the fastpath
addition and line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from reordering the fastpath
body to follow line 13, which permits any subsequent signal handlers to
undertake theft. Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the theft state-change
to READY, and, if so, line 16 executes a memory barrier to ensure that any
CPU that sees line 17 setting state to READY also sees the effects of line 9.
If the fastpath addition at line 9 was executed, then line 20 returns success.

Otherwise, we fall through to the slowpath starting at line 21. The
structure of the slowpath is similar to those of earlier examples, so its
analysis is left as an exercise to the reader. Similarly, the structure of
sub_count () on Listing 5.20 is the same as that of add_count (), so the
analysis of sub_count () is also left as an exercise for the reader, as is the
analysis of read_count () in Listing 5.21.

Lines 1-12 of Listing 5.22 show count_init (), which set up flush_
local_count_sig() as the signal handler for SIGUSR1, enabling the

Listing 5.22: Signal-Theft Limit Counter Initialization Functions

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

void count_init(void)

{

}

struct sigaction sa;

sa.sa_handler = flush_local_count_sig;
sigemptyset(&sa.sa_mask) ;
sa.sa_flags = 0;
if (sigaction(SIGUSR1, &sa, NULL) != 0) {
perror("sigaction");
exit (EXIT_FAILURE);

void count_register_thread(void)

{

}

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex);
counterp[idx] = &counter;
countermaxp[idx] = &countermax;
theftp[idx] = &theft;
spin_unlock(&gblcnt_mutex) ;

void count_unregister_thread(int nthreadsexpected)

{

int idx = smp_thread_id();

spin_lock(&gblcnt_mutex) ;
globalize_count();
counterp[idx] = NULL;
countermaxp[idx] = NULL;
theftp[idx] = NULL;
spin_unlock(&gblcnt_mutex) ;

153

pthread_kill() calls in flush_local_count() to invoke flush_
local_count_sig(). The code for thread registry and unregistry is
similar to that of earlier examples, so its analysis is left as an exercise for
the reader.

5.4.5 Signal-Theft Limit Counter Discussion

The signal-theft implementation runs more than eight times as fast as the
atomic implementation on my six-core x86 laptop. Is it always preferable?

The signal-theft implementation would be vastly preferable on Pentium-4
systems, given their slow atomic instructions, but the old 80386-based
Sequent Symmetry systems would do much better with the shorter path
length of the atomic implementation. However, this increased update-side
performance comes at the prices of higher read-side overhead: Those POSIX
signals are not free. If ultimate performance is of the essence, you will need
to measure them both on the system that your application is to be deployed
on.

Quick Quiz 5.55: Not only are POSIX signals slow, sending one to each thread
simply does not scale. What would you do if you had (say) 10,000 threads and
needed the read side to be fast? W

This is but one reason why high-quality APIs are so important: They
permit implementations to be changed as required by ever-changing hardware
performance characteristics.

Quick Quiz 5.56: What if you want an exact limit counter to be exact only for its
lower limit, but to allow the upper limit to be inexact? WM

5.4.6 Applying Exact Limit Counters

Although the exact limit counter implementations presented in this section
can be very useful, they are not much help if the counter’s value remains
near zero at all times, as it might when counting the number of outstanding
accesses to an I/O device. The high overhead of such near-zero counting is
especially painful given that we normally don’t care how many references
there are. As noted in the removable I/O device access-count problem posed

154

by Quick Quiz 5.5, the number of accesses is irrelevant except in those rare
cases when someone is actually trying to remove the device.

One simple solution to this problem is to add a large “bias” (for example,
one billion) to the counter in order to ensure that the value is far enough
from zero that the counter can operate efficiently. When someone wants to
remove the device, this bias is subtracted from the counter value. Counting
the last few accesses will be quite inefficient, but the important point is that
the many prior accesses will have been counted at full speed.

Quick Quiz 5.57: What else had you better have done when using a biased
counter? W

Although a biased counter can be quite helpful and useful, it is only a
partial solution to the removable I/O device access-count problem called out
on page 108. When attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need to prevent any
future accesses from starting. One way to accomplish this is to read-acquire
a reader-writer lock when updating the counter, and to write-acquire that
same reader-writer lock when checking the counter. Code for doing I/0
might be as follows:

read_lock(&mylock) ;

if (removing) {
read_unlock(&mylock) ;
cancel_io();

} else {
add_count (1) ;
read_unlock(&mylock) ;
do_io();
sub_count (1) ;

S 0V % 9w kW -

Line 1 read-acquires the lock, and either line 3 or 7 releases it. Line 2
checks to see if the device is being removed, and, if so, line 3 releases the
lock and line 4 cancels the I/O, or takes whatever action is appropriate given
that the device is to be removed. Otherwise, line 6 increments the access
count, line 7 releases the lock, line 8 performs the I/O, and line 9 decrements
the access count.

155

Quick Quiz 5.58: This is ridiculous! We are read-acquiring a reader-writer lock
to update the counter? What are you playing at??? Wl

The code to remove the device might be as follows:

write_lock(&mylock) ;

removing = 1;

sub_count (mybias) ;

write_unlock(&mylock) ;

while (read_count() !'= 0) {
poll(NULL, 0, 1);

}

remove_device();

® N kW —

Line 1 write-acquires the lock and line 4 releases it. Line 2 notes that
the device is being removed, and the loop spanning lines 5—7 waits for any
I/O operations to complete. Finally, line 8 does any additional processing
needed to prepare for device removal.

Quick Quiz 5.59: What other issues would need to be accounted for in a real
system? H

5.5 Parallel Counting Discussion

This idea that there is generality in the specific is of
far-reaching importance.

Douglas R. Hofstadter

This chapter has presented the reliability, performance, and scalability
problems with traditional counting primitives. The C-language ++ operator
is not guaranteed to function reliably in multithreaded code, and atomic
operations to a single variable neither perform nor scale well. This chapter
therefore presented a number of counting algorithms that perform and scale
extremely well in certain special cases.

It is well worth reviewing the lessons from these counting algorithms.
To that end, Section 5.5.1 overviews requisite validation, Section 5.5.2

156

Table 5.1: Statistical/Limit Counter Performance on x86

. < Reads (ns)
Algorithm g Updates
(count_*.c) Section & (ns) 1CPU 8CPUs 64CPUs 420 CPUs

stat 522 6.3 294 303 315 612
stat_eventual 524 6.4 1 1 1 1
end 523 2.9 301 6,309 147,594 239,683
end_rcu 13.5.1 2.9 454 481 508 2,317
lim 532 N 3.2 435 6,678 156,175 239,422
lim_app 534 N 2.4 485 7,041 173,108 239,682
lim_atomic 541 Y 19.7 513 7,085 199,957 239,450
lim_sig 544 Y 4.7 519 6,805 120,000 238,811

summarizes performance and scalability, Section 5.5.3 discusses the need
for specialization, and finally, Section 5.5.4 enumerates lessons learned and
calls attention to later chapters that will expand on these lessons.

5.5.1 Parallel Counting Validation

Many of the algorithms in this section are quite simple, so much so that it
is tempting to declare them to be correct by construction or by inspection.
Unfortunately, it is all too easy for those carrying out the construction
or the inspection to become overconfident, tired, confused, or just plain
sloppy, all of which can result in bugs. And early implementations of
these limit counters have in fact contained bugs, in some cases aided and
abetted by the complexities inherent in maintaining a 64-bit count on a
32-bit system. Therefore, validation is not optional, even for the simple
algorithms presented in this chapter.

The statistical counters are tested for acting like counters
(“counttorture.h”), thatis, that the aggregate sum in the counter changes
by the sum of the amounts added by the various update-side threads.

The limit counters are also tested for acting like counters (“limtorture.
h”), and additionally checked for their ability to accommodate the specified
limit.

157

Both of these test suites produce performance data that is used in Sec-
tion 5.5.2.

Although this level of validation is good and sufficient for textbook
implementations such as these, it would be wise to apply additional validation
before putting similar algorithms into production. Chapter 11 describes
additional approaches to testing, and given the simplicity of most of these
counting algorithms, most of the techniques described in Chapter 12 can
also be quite helpful.

5.5.2 Parallel Counting Performance

The top half of Table 5.1 shows the performance of the four parallel
statistical counting algorithms. All four algorithms provide near-perfect
linear scalability for updates. The per-thread-variable implementation
(count_end.c) is significantly faster on updates than the array-based
implementation (count_stat. c), but is slower at reads on large numbers
of core, and suffers severe lock contention when there are many parallel
readers. This contention can be addressed using the deferred-processing
techniques introduced in Chapter 9, as shown on the count_end_rcu.c
row of Table 5.1. Deferred processing also shines on the count_stat_
eventual . c row, courtesy of eventual consistency.

Quick Quiz 5.60: On the count_stat.c row of Table 5.1, we see that the
read-side scales linearly with the number of threads. How is that possible given
that the more threads there are, the more per-thread counters must be summed up?

Quick Quiz 5.61: Even on the fourth row of Table 5.1, the read-side performance
of these statistical counter implementations is pretty horrible. So why bother with
them? W

The bottom half of Table 5.1 shows the performance of the parallel limit-
counting algorithms. Exact enforcement of the limits incurs a substantial
update-side performance penalty, although on this x86 system that penalty
can be reduced by substituting signals for atomic operations. All of
these implementations suffer from read-side lock contention in the face of
concurrent readers.

158

Quick Quiz 5.62: Given the performance data shown in the bottom half of
Table 5.1, we should always prefer signals over atomic operations, right? H

Quick Quiz 5.63: Can advanced techniques be applied to address the lock
contention for readers seen in the bottom half of Table 5.1? W

In short, this chapter has demonstrated a number of counting algorithms
that perform and scale extremely well in a number of special cases. But
must our parallel counting be confined to special cases? Wouldn’t it be
better to have a general algorithm that operated efficiently in all cases? The
next section looks at these questions.

5.5.3 Parallel Counting Specializations

The fact that these algorithms only work well in their respective special cases
might be considered a major problem with parallel programming in general.
After all, the C-language ++ operator works just fine in single-threaded code,
and not just for special cases, but in general, right?

This line of reasoning does contain a grain of truth, but is in essence
misguided. The problem is not parallelism as such, but rather scalability. To
understand this, first consider the C-language ++ operator. The fact is that
it does not work in general, only for a restricted range of numbers. If you
need to deal with 1,000-digit decimal numbers, the C-language ++ operator
will not work for you.

Quick Quiz 5.64: The ++ operator works just fine for 1,000-digit numbers!
Haven’t you heard of operator overloading??? H

This problem is not specific to arithmetic. Suppose you need to store and
query data. Should you use an ASCII file? XML? A relational database? A
linked list? A dense array? A B-tree? A radix tree? Or one of the plethora
of other data structures and environments that permit data to be stored and
queried? It depends on what you need to do, how fast you need it done, and
how large your data set is—even on sequential systems.

Similarly, if you need to count, your solution will depend on how large of
numbers you need to work with, how many CPUs need to be manipulating

159

a given number concurrently, how the number is to be used, and what level
of performance and scalability you will need.

Nor is this problem specific to software. The design for a bridge meant
to allow people to walk across a small brook might be a simple as a
single wooden plank. But you would probably not use a plank to span the
kilometers-wide mouth of the Columbia River, nor would such a design
be advisable for bridges carrying concrete trucks. In short, just as bridge
design must change with increasing span and load, so must software design
change as the number of CPUs increases. That said, it would be good to
automate this process, so that the software adapts to changes in hardware
configuration and in workload. There has in fact been some research into
this sort of automation [AHS™03, SAH"03], and the Linux kernel does some
boot-time reconfiguration, including limited binary rewriting. This sort of
adaptation will become increasingly important as the number of CPUs on
mainstream systems continues to increase.

In short, as discussed in Chapter 3, the laws of physics constrain parallel
software just as surely as they constrain mechanical artifacts such as bridges.
These constraints force specialization, though in the case of software it
might be possible to automate the choice of specialization to fit the hardware
and workload in question.

Of course, even generalized counting is quite specialized. We need to
do a great number of other things with computers. The next section relates
what we have learned from counters to topics taken up later in this book.

5.5.4 Parallel Counting Lessons

The opening paragraph of this chapter promised that our study of counting
would provide an excellent introduction to parallel programming. This
section makes explicit connections between the lessons from this chapter
and the material presented in a number of later chapters.

The examples in this chapter have shown that an important scalability and
performance tool is partitioning. The counters might be fully partitioned,
as in the statistical counters discussed in Section 5.2, or partially partitioned
as in the limit counters discussed in Sections 5.3 and 5.4. Partitioning will

160

be considered in far greater depth in Chapter 6, and partial parallelization in
particular in Section 6.4, where it is called parallel fastpath.

Quick Quiz 5.65: But if we are going to have to partition everything, why
bother with shared-memory multithreading? Why not just partition the problem
completely and run as multiple processes, each in its own address space? H

The partially partitioned counting algorithms used locking to guard
the global data, and locking is the subject of Chapter 7. In contrast, the
partitioned data tended to be fully under the control of the corresponding
thread, so that no synchronization whatsoever was required. This data
ownership will be introduced in Section 6.3.4 and discussed in more detail
in Chapter 8.

Because integer addition and subtraction are extremely cheap compared to
typical synchronization operations, achieving reasonable scalability requires
synchronization operations be used sparingly. One way of achieving this
is to batch the addition and subtraction operations, so that a great many of
these cheap operations are handled by a single synchronization operation.
Batching optimizations of one sort or another are used by each of the
counting algorithms listed in Table 5.1.

Finally, the eventually consistent statistical counter discussed in Sec-
tion 5.2.4 showed how deferring activity (in that case, updating the global
counter) can provide substantial performance and scalability benefits. This
approach allows common case code to use much cheaper synchronization
operations than would otherwise be possible. Chapter 9 will examine a
number of additional ways that deferral can improve performance, scalability,
and even real-time response.

Summarizing the summary:

1. Partitioning promotes performance and scalability.

2. Partial partitioning, that is, partitioning applied only to common code
paths, works almost as well.

3. Partial partitioning can be applied to code (as in Section 5.2’s statistical
counters’ partitioned updates and non-partitioned reads), but also
across time (as in Section 5.3’s and Section 5.4’s limit counters running
fast when far from the limit, but slowly when close to the limit).

161

4. Partitioning across time often batches updates locally in order to reduce
the number of expensive global operations, thereby decreasing syn-
chronization overhead, in turn improving performance and scalability.
All the algorithms shown in Table 5.1 make heavy use of batching.

5. Read-only code paths should remain read-only: Spurious synchroniza-
tion writes to shared memory kill performance and scalability, as seen
in the count_end. c row of Table 5.1.

6. Judicious use of delay promotes performance and scalability, as seen
in Section 5.2.4.

7. Parallel performance and scalability is usually a balancing act: Beyond
a certain point, optimizing some code paths will degrade others. The
count_stat.c and count_end_rcu.c rows of Table 5.1 illustrate
this point.

8. Different levels of performance and scalability will affect algorithm and
data-structure design, as do a large number of other factors. Figure 5.1
illustrates this point: Atomic increment might be completely acceptable
for a two-CPU system, but nevertheless be completely inadequate for
an eight-CPU system.

Summarizing still further, we have the “big three” methods of increasing
performance and scalability, namely (1) partitioning over CPUs or threads,
(2) batching so that more work can be done by each expensive synchro-
nization operation, and (3) weakening synchronization operations where
feasible. As a rough rule of thumb, you should apply these methods in
this order, as was noted earlier in the discussion of Figure 2.6 on page 32.
The partitioning optimization applies to the “Resource Partitioning and
Replication” bubble, the batching optimization to the “Work Partitioning”
bubble, and the weakening optimization to the “Parallel Access Control”
bubble, as shown in Figure 5.8. Of course, if you are using special-purpose
hardware such as digital signal processors (DSPs), field-programmable gate
arrays (FPGAs), or general-purpose graphical processing units (GPGPUs),
you may need to pay close attention to the “Interacting With Hardware”
bubble throughout the design process. For example, the structure of a

162

Figure 5.8: Optimization and the Four Parallel-Programming Tasks

GPGPU’s hardware threads and memory connectivity might richly reward
very careful partitioning and batching design decisions.

In short, as noted at the beginning of this chapter, the simplicity of
counting have allowed us to explore many fundamental concurrency issues
without the distraction of complex synchronization primitives or elaborate
data structures. Such synchronization primitives and data structures are
covered in later chapters.

v2022.09.2ba

163

Chapter 6
Partitioning and Synchronization Design

Divide and rule.

Philip Il of Macedon

This chapter describes how to design software to take advantage of modern
commodity multicore systems by using idioms, or “design patterns” [Ale79,
GHIV95, SSRB00], to balance performance, scalability, and response
time. Correctly partitioned problems lead to simple, scalable, and high-
performance solutions, while poorly partitioned problems result in slow and
complex solutions. This chapter will help you design partitioning into your
code, with some discussion of batching and weakening as well. The word
“design” is very important: You should partition first, batch second, weaken
third, and code fourth. Changing this order often leads to poor performance
and scalability along with great frustration.

To this end, Section 6.1 presents partitioning exercises, Section 6.2
reviews partitionability design criteria, Section 6.3 discusses synchronization
granularity selection, Section 6.4 overviews important parallel-fastpath
design patterns that provide speed and scalability on common-case fastpaths
while using simpler less-scalable “slow path” fallbacks for unusual situations,
and finally Section 6.5 takes a brief look beyond partitioning.

! That other great dodge around the Laws of Physics, read-only replication, is covered in
Chapter 9.

164

Figure 6.1: Dining Philosophers Problem

6.1 Partitioning Exercises

Whenever a theory appears to you as the only
possible one, take this as a sign that you have neither
understood the theory nor the problem which it was
intended to solve.

Karl Popper

Although partitioning is more widely understood than it was in the early
2000s, its value is still underappreciated. Section 6.1.1 therefore takes
more highly parallel look at the classic Dining Philosophers problem and
Section 6.1.2 revisits the double-ended queue.

165

Figure 6.2: Partial Starvation Is Also Bad

6.1.1 Dining Philosophers Problem

Figure 6.1 shows a diagram of the classic Dining Philosophers prob-
lem [Dij71]. This problem features five philosophers who do nothing but
think and eat a “very difficult kind of spaghetti” which requires two forks to
eat.” A given philosopher is permitted to use only the forks to his or her
immediate right and left, but will not put a given fork down until sated.

The object is to construct an algorithm that, quite literally, prevents
starvation. One starvation scenario would be if all of the philosophers
picked up their leftmost forks simultaneously. Because none of them will
put down their fork until after they finished eating, and because none of
them may pick up their second fork until at least one of them has finished
eating, they all starve. Please note that it is not sufficient to allow at least
one philosopher to eat. As Figure 6.2 shows, starvation of even a few of the
philosophers is to be avoided.

Dijkstra’s solution used a global semaphore, which works fine assuming
negligible communications delays, an assumption that became invalid in

2 But feel free to instead think in terms of chopsticks.

166

Figure 6.3: Dining Philosophers Problem, Textbook Solution

the late 1980s or early 1990s.3 More recent solutions number the forks as
shown in Figure 6.3. Each philosopher picks up the lowest-numbered fork
next to his or her plate, then picks up the other fork. The philosopher sitting
in the uppermost position in the diagram thus picks up the leftmost fork
first, then the rightmost fork, while the rest of the philosophers instead pick
up their rightmost fork first. Because two of the philosophers will attempt
to pick up fork 1 first, and because only one of those two philosophers will
succeed, there will be five forks available to four philosophers. At least one
of these four will have two forks, and will thus be able to eat.

This general technique of numbering resources and acquiring them
in numerical order is heavily used as a deadlock-prevention technique.
However, it is easy to imagine a sequence of events that will result in only
one philosopher eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.

3 It is all too easy to denigrate Dijkstra from the viewpoint of the year 2021, more than
50 years after the fact. If you still feel the need to denigrate Dijkstra, my advice is to publish
something, wait 50 years, and then see how well your ideas stood the test of time.

167

Figure 6.4: Dining Philosophers Problem, Partitioned

2. P3 picks up fork 2.
3. P4 picks up fork 3.
4. PS5 picks up fork 4.
5. PS5 picks up fork 5 and eats.
6. P5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philosopher eating at a
given time, even when all five philosophers are hungry, despite the fact that
there are more than enough forks for two philosophers to eat concurrently.
It should be possible to do better than this!

One approach is shown in Figure 6.4, which includes four philosophers
rather than five to better illustrate the partition technique. Here the upper

168

and rightmost philosophers share a pair of forks, while the lower and
leftmost philosophers share another pair of forks. If all philosophers are
simultaneously hungry, at least two will always be able to eat concurrently.
In addition, as shown in the figure, the forks can now be bundled so that the
pair are picked up and put down simultaneously, simplifying the acquisition
and release algorithms.

‘ Quick Quiz 6.1: Is there a better solution to the Dining Philosophers Problem?
|

Quick Quiz 6.2: How would you valididate an algorithm alleged to solve the
Dining Philosophers Problem? W

This is an example of “horizontal parallelism” [Inm85] or “data par-
allelism”, so named because there is no dependency among the pairs of
philosophers. In a horizontally parallel data-processing system, a given
item of data would be processed by only one of a replicated set of software
components.

Quick Quiz 6.3: And in just what sense can this “horizontal parallelism” be said
to be “horizontal”? W

6.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a list of elements that
may be inserted or removed from either end [Knu73]. It has been claimed that
a lock-based implementation permitting concurrent operations on both ends
of the double-ended queue is difficult [Gro07]. This section shows how a
partitioning design strategy can result in a reasonably simple implementation,
looking at three general approaches in the following sections. But first, how
should we validate a concurrent double-ended queue?

6.1.2.1 Double-Ended Queue Validation

A good place to start is with invariants. For example, if elements are pushed
onto one end of a double-ended queue and popped off of the other, the order
of those elements must be preserved. Similarly, if elements are pushed onto

169

one end of the queue and popped off of that same end, the order of those
elements must be reversed. Any element popped from the queue must have
been most recently pushed onto that queue, and if the queue is emptied, all
elements pushed onto it must have already been popped from it.

The beginnings of a test suite for concurrent double-ended queues
(“deqtorture.h”) provides the following checks:

1. Element-ordering checks provided by CHECK_SEQUENCE_PAIR().

2. Checks that elements popped were most recently pushed, provided by
melee().

3. Checks that elements pushed are popped before the queue is emptied,
also provided by melee ().

This suite includes both sequential and concurrent tests. Although this
suite is good and sufficient for textbook code, you should test considerably
more thoroughly for code intended for production use. Chapters 11 and 12
cover a large array of validation tools and techniques.

But with a prototype test suite in place, we are ready to look at the
double-ended-queue algorithms in the next sections.

6.1.2.2 Left- and Right-Hand Locks

One seemingly straightforward approach would be to use a doubly linked list
with a left-hand lock for left-hand-end enqueue and dequeue operations along
with a right-hand lock for right-hand-end operations, as shown in Figure 6.5.
However, the problem with this approach is that the two locks’ domains must
overlap when there are fewer than four elements on the list. This overlap is
due to the fact that removing any given element affects not only that element,
but also its left- and right-hand neighbors. These domains are indicated by
color in the figure, with blue with downward stripes indicating the domain
of the left-hand lock, red with upward stripes indicating the domain of
the right-hand lock, and purple (with no stripes) indicating overlapping
domains. Although it is possible to create an algorithm that works this way,
the fact that it has no fewer than five special cases should raise a big red
flag, especially given that concurrent activity at the other end of the list can

170

Figure 6.5: Double-Ended Queue With Left- and Right-Hand Locks

shift the queue from one special case to another at any time. It is far better
to consider other designs.

6.1.2.3 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is shown in Figure 6.6.
Two separate double-ended queues are run in tandem, each protected by its

Figure 6.6: Compound Double-Ended Queue

v2022.09.2ba

171

own lock. This means that elements must occasionally be shuttled from one
of the double-ended queues to the other, in which case both locks must be
held. A simple lock hierarchy may be used to avoid deadlock, for example,
always acquiring the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to the same double-ended
queue, as we can unconditionally left-enqueue elements to the left-hand
queue and right-enqueue elements to the right-hand queue. The main
complication arises when dequeuing from an empty queue, in which case it
is necessary to:

1. If holding the right-hand lock, release it and acquire the left-hand lock.
2. Acquire the right-hand lock.

3. Rebalance the elements across the two queues.

4. Remove the required element if there is one.

5. Release both locks.

Quick Quiz 6.4: In this compound double-ended queue implementation, what
should be done if the queue has become non-empty while releasing and reacquiring
the lock? H

The resulting code (locktdeq. c) is quite straightforward. The rebalanc-
ing operation might well shuttle a given element back and forth between
the two queues, wasting time and possibly requiring workload-dependent
heuristics to obtain optimal performance. Although this might well be the
best approach in some cases, it is interesting to try for an algorithm with
greater determinism.

6.1.2.4 Hashed Double-Ended Queue

One of the simplest and most effective ways to deterministically partition a
data structure is to hash it. It is possible to trivially hash a double-ended
queue by assigning each element a sequence number based on its position
in the list, so that the first element left-enqueued into an empty queue is
numbered zero and the first element right-enqueued into an empty queue is

172

DEQO DEQ2 | DEQ3

Lock 0 Lock2 | Lock 3

Index L Index R

Lock L Lock R

Figure 6.7: Hashed Double-Ended Queue

numbered one. A series of elements left-enqueued into an otherwise-idle
queue would be assigned decreasing numbers (-1, -2, -3, ...), while a
series of elements right-enqueued into an otherwise-idle queue would be
assigned increasing numbers (2, 3, 4, ...). A key point is that it is not
necessary to actually represent a given element’s number, as this number
will be implied by its position in the queue.

Given this approach, we assign one lock to guard the left-hand index, one
to guard the right-hand index, and one lock for each hash chain. Figure 6.7
shows the resulting data structure given four hash chains. Note that the lock
domains do not overlap, and that deadlock is avoided by acquiring the index
locks before the chain locks, and by never acquiring more than one lock of a
given type (index or chain) at a time.

Each hash chain is itself a double-ended queue, and in this example,
each holds every fourth element. The uppermost portion of Figure 6.8
shows the state after a single element (“R;”’) has been right-enqueued, with
the right-hand index having been incremented to reference hash chain 2.
The middle portion of this same figure shows the state after three more
elements have been right-enqueued. As you can see, the indexes are back
to their initial states (see Figure 6.7), however, each hash chain is now
non-empty. The lower portion of this figure shows the state after three
additional elements have been left-enqueued and an additional element has
been right-enqueued.

From the last state shown in Figure 6.8, a left-dequeue operation would
return element “L._,” and leave the left-hand index referencing hash chain 2,

Ry

DEQO | DEQ1 | DEQ2 | DEQ3

Index L Index R

R4 R Ro Rs

DEQO | DEQ1 | DEQ2 | DEQ3

Index L Index R
R4 Rs R> R3
Lo R1 Lo L_q

DEQO | DEQ1 | DEQ2 | DEQ3

IndexL | | Index R

Figure 6.8: Hashed Double-Ended Queue After Insertions

174

R4 Rs Re R7

Lo R1 Ra2 Rs

La| La| Lol Ly

Lg| Ls| Lg| Ls

Figure 6.9: Hashed Double-Ended Queue With 16 Elements

Listing 6.1: Lock-Based Parallel Double-Ended Queue Data Structure

struct pdeq {

1
2 spinlock_t llock;

3 int 1lidx;

4 spinlock_t rlock;

5 int ridx;

6 struct deq bkt [PDEQ_N_BKTS];
7}

which would then contain only a single element (“R;”). In this state, a
left-enqueue running concurrently with a right-enqueue would result in
lock contention, but the probability of such contention can be reduced to
arbitrarily low levels by using a larger hash table.

Figure 6.9 shows how 16 elements would be organized in a four-hash-
bucket parallel double-ended queue. Each underlying single-lock double-
ended queue holds a one-quarter slice of the full parallel double-ended
queue.

Listing 6.1 shows the corresponding C-language data structure, assuming
an existing struct deq that provides a trivially locked double-ended-queue
implementation. This data structure contains the left-hand lock on line 2,
the left-hand index on line 3, the right-hand lock on line 4 (which is cache-
aligned in the actual implementation), the right-hand index on line 5, and,
finally, the hashed array of simple lock-based double-ended queues on line 6.
A high-performance implementation would of course use padding or special
alignment directives to avoid false sharing.

Listing 6.2: Lock-Based Parallel Double-Ended Queue Implementation

I struct cds_list_head *pdeq_pop_l(struct pdeq *d)
2 {

3 struct cds_list_head *e;

4 int i;

5

6 spin_lock(&d->1lock);

7 i = moveright(d->1idx);

8 e = deq_pop_1(&d->bkt[i]);
9 if (e !'= NULL)

10 d->1lidx = i;

11 spin_unlock(&d->1lock) ;

12 return e;

13}

14

15 struct cds_list_head *pdeq_pop_r(struct pdeq *d)
16 {

17 struct cds_list_head *e;
18 int i;

19

20 spin_lock(&d->rlock) ;

21 i = moveleft(d->ridx);

2 e = deq_pop_r(&d->bkt[i]);
23 if (e != NULL)

24 d->ridx = i;

25 spin_unlock(&d->rlock) ;

26 return e;

27 }

29 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)

31 int i;

32

33 spin_lock(&d->1lock) ;

34 i = d->1lidx;

35 deq_push_1(e, &d->bkt[il);

36 d->1idx = moveleft(d->lidx);
37 spin_unlock(&d->1lock) ;

38)

39

40 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)

42 int i;

43

44 spin_lock(&d->rlock) ;

45 i = d->ridx;

46 deq_push_r(e, &d->bkt[il);

47 d->ridx = moveright(d->ridx);
48 spin_unlock(&d->rlock) ;

176

Listing 6.2 (Lockhdeq. c) shows the implementation of the enqueue and
dequeue functions.* Discussion will focus on the left-hand operations, as
the right-hand operations are trivially derived from them.

Lines 1-13 show pdeq_pop_1(), which left-dequeues and returns an
element if possible, returning NULL otherwise. Line 6 acquires the left-hand
spinlock, and line 7 computes the index to be dequeued from. Line 8
dequeues the element, and, if line 9 finds the result to be non-NULL, line 10
records the new left-hand index. Either way, line 11 releases the lock, and,
finally, line 12 returns the element if there was one, or NULL otherwise.

Lines 29-38 show pdeq_push_1(), which left-enqueues the specified
element. Line 33 acquires the left-hand lock, and line 34 picks up the
left-hand index. Line 35 left-enqueues the specified element onto the
double-ended queue indexed by the left-hand index. Line 36 then updates
the left-hand index and line 37 releases the lock.

As noted earlier, the right-hand operations are completely analogous to
their left-handed counterparts, so their analysis is left as an exercise for the
reader.

Quick Quiz 6.5: Is the hashed double-ended queue a good solution? Why or
why not?

6.1.2.5 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue, using a trivial
rebalancing scheme that moves all the elements from the non-empty queue
to the now-empty queue.

Quick Quiz 6.6: Move all the elements to the queue that became empty? In
what possible universe is this brain-dead solution in any way optimal??? H

In contrast to the hashed implementation presented in the previous section,
the compound implementation will build on a sequential implementation of
a double-ended queue that uses neither locks nor atomic operations.

4 One could easily create a polymorphic implementation in any number of languages, but
doing so is left as an exercise for the reader.

177

Listing 6.3: Compound Parallel Double-Ended Queue Implementation

I struct cds_list_head *pdeq_pop_l(struct pdeq *d)

2 {

3 struct cds_list_head *e;

4

5 spin_lock(&d->1lock);

6 e = deq_pop_1(&d->1deq);

7 if (e == NULL) {

8 spin_lock(&d->rlock) ;

9 e = deq_pop_1(&d->rdeq) ;

10 cds_list_splice(&d->rdeq.chain, &d->ldeq.chain);
I CDS_INIT_LIST_HEAD(&d->rdeq.chain);
12 spin_unlock(&d->rlock) ;

13 }

14 spin_unlock(&d->1lock) ;

15 return e;

16}

17

18 struct cds_list_head *pdeq_pop_r(struct pdeq *d)

19 {

20 struct cds_list_head *e;

21

2 spin_lock(&d->rlock);

23 e = deq_pop_r(&d->rdeq) ;

24 if (e == NULL) {

25 spin_unlock(&d->rlock) ;

2 spin_lock(&d->1lock) ;

27 spin_lock(&d->rlock) ;

28 e = deq_pop_r(&d->rdeq) ;

29 if (e == NULL) {

30 e = deq_pop_r(&d->1deq);

31 cds_list_splice(&d->1ldeq.chain, &d->rdeq.chain);
» CDS_INIT_LIST_HEAD(&d->ldeq.chain);
33 }

34 spin_unlock(&d->1lock) ;

35 }

36 spin_unlock(&d->rlock);

37 return e;

38 }

40 void pdeq_push_l(struct cds_list_head *e, struct pdeq *d)
41

42 spin_lock(&d->11lock) ;

43 deq_push_1(e, &d->ldeq);
44 spin_unlock(&d->1lock) ;
4}

46
47 void pdeq_push_r(struct cds_list_head *e, struct pdeq *d)
4 {

49 spin_lock(&d->rlock);
50 deq_push_r(e, &d->rdeq);
51 spin_unlock(&d->rlock) ;

178

Listing 6.3 shows the implementation. Unlike the hashed implementation,
this compound implementation is asymmetric, so that we must consider the
pdeq_pop_1() and pdeq_pop_r () implementations separately.

Quick Quiz 6.7: Why can’t the compound parallel double-ended queue imple-
mentation be symmetric? W

The pdeq_pop_1() implementation is shown on lines 1-16 of the figure.
Line 5 acquires the left-hand lock, which line 14 releases. Line 6 attempts to
left-dequeue an element from the left-hand underlying double-ended queue,
and, if successful, skips lines 8—13 to simply return this element. Otherwise,
line 8 acquires the right-hand lock, line 9 left-dequeues an element from
the right-hand queue, and line 10 moves any remaining elements on the
right-hand queue to the left-hand queue, line 11 initializes the right-hand
queue, and line 12 releases the right-hand lock. The element, if any, that
was dequeued on line 9 will be returned.

The pdeq_pop_r () implementation is shown on lines 18—38 of the figure.
As before, line 22 acquires the right-hand lock (and line 36 releases it), and
line 23 attempts to right-dequeue an element from the right-hand queue,
and, if successful, skips lines 2535 to simply return this element. However,
if line 24 determines that there was no element to dequeue, line 25 releases
the right-hand lock and lines 2627 acquire both locks in the proper order.
Line 28 then attempts to right-dequeue an element from the right-hand
list again, and if line 29 determines that this second attempt has failed,
line 30 right-dequeues an element from the left-hand queue (if there is one
available), line 31 moves any remaining elements from the left-hand queue
to the right-hand queue, and line 32 initializes the left-hand queue. Either
way, line 34 releases the left-hand lock.

Quick Quiz 6.8: Why is it necessary to retry the right-dequeue operation on
line 28 of Listing 6.3? W

Quick Quiz 6.9: Surely the left-hand lock must sometimes be available!!! So
why is it necessary that line 25 of Listing 6.3 unconditionally release the right-hand
lock? W

The pdeq_push_1() implementation is shown on lines 40-45 of List-
ing 6.3. Line 42 acquires the left-hand spinlock, line 43 left-enqueues the

179

element onto the left-hand queue, and finally line 44 releases the lock. The
pdeq_push_r () implementation (shown on lines 47-52) is quite similar.

Quick Quiz 6.10: But in the case where data is flowing in only one direction, the
algorithm shown in Listing 6.3 will have both ends attempting to acquire the same
lock whenever the consuming end empties its underlying double-ended queue.
Doesn’t that mean that sometimes this algorithm fails to provide concurrent access
to both ends of the queue even when the queue contains an arbitrarily large number
of elements? M

6.1.2.6 Double-Ended Queue Discussion

The compound implementation is somewhat more complex than the hashed
variant presented in Section 6.1.2.4, but is still reasonably simple. Of course,
a more intelligent rebalancing scheme could be arbitrarily complex, but the
simple scheme shown here has been shown to perform well compared to
software alternatives [DCW*11] and even compared to algorithms using
hardware assist [DLM*10]. Nevertheless, the best we can hope for from
such a scheme is 2x scalability, as at most two threads can be holding the
dequeue’s locks concurrently. This limitation also applies to algorithms
based on non-blocking synchronization, such as the compare-and-swap-
based dequeue algorithm of Michael [Mic03].>

Quick Quiz 6.11: Why are there not one but two solutions to the double-ended
queue problem? H

In fact, as noted by Dice et al. [DLM*10], an unsynchronized single-
threaded double-ended queue significantly outperforms any of the parallel
implementations they studied. Therefore, the key point is that there can
be significant overhead enqueuing to or dequeuing from a shared queue,
regardless of implementation. This should come as no surprise in light of
the material in Chapter 3, given the strict first-in-first-out (FIFO) nature of
these queues.

5 This paper is interesting in that it showed that special double-compare-and-swap (DCAS)
instructions are not needed for lock-free implementations of double-ended queues. Instead, the
common compare-and-swap (e.g., x86 cmpxchg) suffices.

180

Furthermore, these strict FIFO queues are strictly FIFO only with respect
to linearization points [HW901° that are not visible to the caller, in fact, in
these examples, the linearization points are buried in the lock-based critical
sections. These queues are not strictly FIFO with respect to (say) the times
at which the individual operations started [HKLP12]. This indicates that
the strict FIFO property is not all that valuable in concurrent programs,
and in fact, Kirsch et al. present less-strict queues that provide improved
performance and scalability [KLP12].” All that said, if you are pushing all
the data used by your concurrent program through a single queue, you really
need to rethink your overall design.

6.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem given in the answer
to the Quick Quiz in Section 6.1.1 is an excellent example of “horizontal
parallelism” or “data parallelism”. The synchronization overhead in this
case is nearly (or even exactly) zero. In contrast, the double-ended queue
implementations are examples of “vertical parallelism” or “pipelining”,
given that data moves from one thread to another. The tighter coordination
required for pipelining in turn requires larger units of work to obtain a given
level of efficiency.

Quick Quiz 6.12: The tandem double-ended queue runs about twice as fast as
the hashed double-ended queue, even when I increase the size of the hash table to
an insanely large number. Why is that? H

Quick Quiz 6.13: Is there a significantly better way of handling concurrency for
double-ended queues? M

These two examples show just how powerful partitioning can be in
devising parallel algorithms. Section 6.3.5 looks briefly at a third example,

6 In short, a linearization point is a single point within a given function where that function
can be said to have taken effect. In this lock-based implementation, the linearization points can
be said to be anywhere within the critical section that does the work.

7 Nir Shavit produced relaxed stacks for roughly the same reasons [Shall]. This situation
leads some to believe that the linearization points are useful to theorists rather than developers,
and leads others to wonder to what extent the designers of such data structures and algorithms
were considering the needs of their users.

181

matrix multiply. However, all three of these examples beg for more and
better design criteria for parallel programs, a topic taken up in the next
section.

6.2 Design Criteria

One pound of learning requires ten pounds of
commonsense to apply it.

Persian proverb

One way to obtain the best performance and scalability is to simply hack
away until you converge on the best possible parallel program. Unfortunately,
if your program is other than microscopically tiny, the space of possible
parallel programs is so huge that convergence is not guaranteed in the
lifetime of the universe. Besides, what exactly is the “best possible parallel
program”? After all, Section 2.2 called out no fewer than three parallel-
programming goals of performance, productivity, and generality, and the
best possible performance will likely come at a cost in terms of productivity
and generality. We clearly need to be able to make higher-level choices at
design time in order to arrive at an acceptably good parallel program before
that program becomes obsolete.

However, more detailed design criteria are required to actually produce a
real-world design, a task taken up in this section. This being the real world,
these criteria often conflict to a greater or lesser degree, requiring that the
designer carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the “forces” acting on the
design, with particularly good tradeoffs between these forces being called
“design patterns” [Ale79, GHIV95].

The design criteria for attaining the three parallel-programming goals are
speedup, contention, overhead, read-to-write ratio, and complexity:

Speedup: As noted in Section 2.2, increased performance is the major
reason to go to all of the time and trouble required to parallelize it.

182

Speedup is defined to be the ratio of the time required to run a sequential
version of the program to the time required to run a parallel version.

Contention: If more CPUs are applied to a parallel program than can be
kept busy by that program, the excess CPUs are prevented from doing
useful work by contention. This may be lock contention, memory
contention, or a host of other performance killers.

Work-to-Synchronization Ratio: A uniprocessor, single-threaded, non-
preemptible, and non-interruptible® version of a given parallel program
would not need any synchronization primitives. Therefore, any time
consumed by these primitives (including communication cache misses
as well as message latency, locking primitives, atomic instructions,
and memory barriers) is overhead that does not contribute directly to
the useful work that the program is intended to accomplish. Note that
the important measure is the relationship between the synchronization
overhead and the overhead of the code in the critical section, with larger
critical sections able to tolerate greater synchronization overhead. The
work-to-synchronization ratio is related to the notion of synchronization
efficiency.

Read-to-Write Ratio: A data structure that is rarely updated may often
be replicated rather than partitioned, and furthermore may be pro-
tected with asymmetric synchronization primitives that reduce readers’
synchronization overhead at the expense of that of writers, thereby
reducing overall synchronization overhead. Corresponding optimiza-
tions are possible for frequently updated data structures, as discussed
in Chapter 5.

Complexity: A parallel program is more complex than an equivalent
sequential program because the parallel program has a much larger state
space than does the sequential program, although large state spaces
having regular structures can in some cases be easily understood.
A parallel programmer must consider synchronization primitives,
messaging, locking design, critical-section identification, and deadlock
in the context of this larger state space.

8 Either by masking interrupts or by being oblivious to them.

183

This greater complexity often translates to higher development and
maintenance costs. Therefore, budgetary constraints can limit the
number and types of modifications made to an existing program, since
a given degree of speedup is worth only so much time and trouble.
Worse yet, added complexity can actually reduce performance and
scalability.

Therefore, beyond a certain point, there may be potential sequential
optimizations that are cheaper and more effective than parallelization.
As noted in Section 2.2.1, parallelization is but one performance
optimization of many, and is furthermore an optimization that applies
most readily to CPU-based bottlenecks.

These criteria will act together to enforce a maximum speedup. The first
three criteria are deeply interrelated, so the remainder of this section analyzes
these interrelationships.’

Note that these criteria may also appear as part of the requirements
specification. For example, speedup may act as a relative desideratum (“the
faster, the better””) or as an absolute requirement of the workload (“the
system must support at least 1,000,000 web hits per second”). Classic
design pattern languages describe relative desiderata as forces and absolute
requirements as context.

An understanding of the relationships between these design criteria can
be very helpful when identifying appropriate design tradeoffs for a parallel
program.

1. The less time a program spends in exclusive-lock critical sections, the
greater the potential speedup. This is a consequence of Amdahl’s
Law [Amd67] because only one CPU may execute within a given
exclusive-lock critical section at a given time.

More specifically, for unbounded linear scalability, the fraction of
time that the program spends in a given exclusive critical section must
decrease as the number of CPUs increases. For example, a program

9 A real-world parallel system will be subject to many additional design criteria, such as
data-structure layout, memory size, memory-hierarchy latencies, bandwidth limitations, and
T/O issues.

184

will not scale to 10 CPUs unless it spends much less than one tenth of
its time in the most-restrictive exclusive-lock critical section.

2. Contention effects consume the excess CPU and/or wallclock time
when the actual speedup is less than the number of available CPUs.
The larger the gap between the number of CPUs and the actual speedup,
the less efficiently the CPUs will be used. Similarly, the greater the
desired efficiency, the smaller the achievable speedup.

3. If the available synchronization primitives have high overhead com-
pared to the critical sections that they guard, the best way to improve
speedup is to reduce the number of times that the primitives are invoked.
This can be accomplished by batching critical sections, using data own-
ership (see Chapter 8), using asymmetric primitives (see Chapter 9),
or by using a coarse-grained design such as code locking.

4. If the critical sections have high overhead compared to the primitives
guarding them, the best way to improve speedup is to increase parallel-
ism by moving to reader/writer locking, data locking, asymmetric, or
data ownership.

5. If the critical sections have high overhead compared to the primitives
guarding them and the data structure being guarded is read much more
often than modified, the best way to increase parallelism is to move to
reader/writer locking or asymmetric primitives.

6. Many changes that improve SMP performance, for example, reducing
lock contention, also improve real-time latencies [McKO05c].

Quick Quiz 6.14: Don’t all these problems with critical sections mean that we
should just always use non-blocking synchronization [Her90], which don’t have
critical sections? H

It is worth reiterating that contention has many guises, including lock
contention, memory contention, cache overflow, thermal throttling, and
much else besides. This chapter looks primarily at lock and memory
contention.

'SP
Sequential
| Program |
«
Partition Batch
S
—> Code —
| Locking |
N
Partition Batch
SR
> Data —
| Locking |
-
Own Disown
SR
> Data —
Ownership
N

Figure 6.10: Design Patterns and Lock Granularity

6.3 Synchronization Granularity

Doing little things well is a step toward doing big
things better.

Harry F. Banks

Figure 6.10 gives a pictorial view of different levels of synchronization
granularity, each of which is described in one of the following sections.
These sections focus primarily on locking, but similar granularity issues
arise with all forms of synchronization.

6.3.1 Sequential Program

If the program runs fast enough on a single processor, and has no interactions
with other processes, threads, or interrupt handlers, you should remove the
synchronization primitives and spare yourself their overhead and complexity.
Some years back, there were those who would argue that Moore’s Law
would eventually force all programs into this category. However, as can be

186

10000 ¢ —
%) - W
o []
S 1000 | *
3 : :
& 100 | f =
35 = 3
(o2 o + =
o B ++ﬁ]
- 10 | =+ =
3] : ++ 3
S i #+ +]
=) 15— + E
5 |+]
0.1 N IR N TN N R B

2828283882928

o o O »d® »® O 6 o o O

~— ~— ~— ~— ~— A Al Al A Al

Year

Figure 6.11: MIPS/Clock-Frequency Trend for Intel CPUs

seen in Figure 6.11, the exponential increase in single-threaded performance
halted in about 2003. Therefore, increasing performance will increasingly
require parallelism.'? Given that back in 2006 Paul typed the first version
of this sentence on a dual-core laptop, and further given that many of the
graphs added in 2020 were generated on a system with 56 hardware threads
per socket, parallelism is well and truly here. It is also important to note that
Ethernet bandwidth is continuing to grow, as shown in Figure 6.12. This
growth will continue to motivate multithreaded servers in order to handle
the communications load.

Please note that this does not mean that you should code each and every
program in a multi-threaded manner. Again, if a program runs quickly

10 This plot shows clock frequencies for newer CPUs theoretically capable of retiring
one or more instructions per clock, and MIPS for older CPUs requiring multiple clocks to
execute even the simplest instruction. The reason for taking this approach is that the newer
CPUs’ ability to retire multiple instructions per clock is typically limited by memory-system
performance.

187
6

1x10 T T T T T 1
o 100000 Ethernet
o
S 10000
£
L 1000
g
o 100 x86 CPUs
=
g w0 :
o
1 +
+
0.1 A T I N N A M
O O O N O . O v O U o
N N O 0 OO0 OO ©O © ~ ~
oo OO OO OO OO OO ©O O O O O
- - - - - -~ N N N N N
Year

Figure 6.12: Ethernet Bandwidth vs. Intel x86 CPU Performance

enough on a single processor, spare yourself the overhead and complexity
of SMP synchronization primitives. The simplicity of the hash-table lookup
code in Listing 6.4 underscores this point.'! A key point is that speedups
due to parallelism are normally limited to the number of CPUs. In contrast,
speedups due to sequential optimizations, for example, careful choice of
data structure, can be arbitrarily large.

[Quick Quiz 6.15: What should you do to validate a hash table? W]

On the other hand, if you are not in this happy situation, read on!

1 The examples in this section are taken from Hart et al. [HMBO6], adapted for clarity by
gathering related code from multiple files.

188

Listing 6.4: Sequential-Program Hash Table Search

1 struct hash_table

2 {

3 long nbuckets;

4 struct node **buckets;
5}

6

7 typedef struct node {

8 unsigned long key;
9 struct node *next;
10 } node_t;

11
12 int hash_search(struct hash_table *h, long key)

13 {

14 struct node *cur;

15

16 cur = h->buckets[key % h->nbuckets];
17 while (cur != NULL) {

18 if (cur->key >= key) {

19 return (cur->key == key);
20 }

21 cur = cur->next;

2 }

23 return 0;

24 }

6.3.2 Code Locking

Code locking is quite simple due to the fact that is uses only global locks.!?
It is especially easy to retrofit an existing program to use code locking in
order to run it on a multiprocessor. If the program has only a single shared
resource, code locking will even give optimal performance. However, many
of the larger and more complex programs require much of the execution
to occur in critical sections, which in turn causes code locking to sharply
limits their scalability.

Therefore, you should use code locking on programs that spend only a
small fraction of their execution time in critical sections or from which only
modest scaling is required. In addition, programs that primarily use the
more scalable approaches described in later sections often use code locking
to handle rare error cases or significant state transitions. In these cases, code

12 ¢ your program instead has locks in data structures, or, in the case of Java, uses classes
with synchronized instances, you are instead using “data locking”, described in Section 6.3.3.

189

Listing 6.5: Code-Locking Hash Table Search

spinlock_t hash_lock;

1
2
3 struct hash_table
4 {

5 long nbuckets;

6 struct node **buckets;

7}

9 typedef struct node {

10 unsigned long key;
11 struct node *next;
12 } node_t;

14 int hash_search(struct hash_table *h, long key)

15 {

16 struct node *cur;

17 int retval;

18

19 spin_lock(&hash_lock);

20 cur = h->buckets[key % h->nbuckets];

21 while (cur !'= NULL) {

2 if (cur->key >= key) {

23 retval = (cur->key == key);
24 spin_unlock(&hash_lock);
25 return retval;

26 }

27 cur = cur->next;

28 ¥

29 spin_unlock(&hash_lock);

30 return O;

31}

locking will provide a relatively simple program that is very similar to its
sequential counterpart, as can be seen in Listing 6.5. However, note that the
simple return of the comparison in hash_search() in Listing 6.4 has now
become three statements due to the need to release the lock before returning.

Note that the hash_lock acquisition and release statements on lines 19,
24, and 29 are mediating ownership of the hash table among the CPUs
wishing to concurrently access that hash table. Another way of looking
at this is that hash_lock is partitioning time, thus giving each requesting
CPU its own partition of time during which it owns this hash table. In
addition, in a well-designed algorithm, there should be ample partitions of
time during which no CPU owns this hash table.

190

Figure 6.13: Lock Contention

[Quick Quiz 6.16: “Partitioning time”? Isn’t that an odd turn of phrase? W]

Unfortunately, code locking is particularly prone to “lock contention”,
where multiple CPUs need to acquire the lock concurrently. SMP program-
mers who have taken care of groups of small children (or groups of older
people who are acting like children) will immediately recognize the danger
of having only one of something, as illustrated in Figure 6.13.

One solution to this problem, named “data locking”, is described in the
next section.

6.3.3 Data Locking

Many data structures may be partitioned, with each partition of the data
structure having its own lock. Then the critical sections for each part of
the data structure can execute in parallel, although only one instance of
the critical section for a given part could be executing at a given time.
You should use data locking when contention must be reduced, and where

191

Listing 6.6: Data-Locking Hash Table Search

struct hash_table
{

1
2
3 long nbuckets;
4
5

struct bucket **buckets;

};

7 struct bucket {

8 spinlock_t bucket_lock;
9 node_t *1list_head;

10 };

11

12 typedef struct node {

13 unsigned long key;

14 struct node *next;

15 } node_t;

17 int hash_search(struct hash_table *h, long key)

18 {

19 struct bucket *bp;

20 struct node *cur;

21 int retval;

22

23 bp = h->buckets[key % h->nbuckets];

24 spin_lock(&bp->bucket_lock) ;

25 cur = bp->list_head;

26 while (cur != NULL) {

27 if (cur->key >= key) {

28 retval = (cur->key == key);
29 spin_unlock (&bp->bucket_lock) ;
30 return retval;

31 }

32 cur = cur->next;

33 ¥

34 spin_unlock(&bp->bucket_lock) ;

35 return O;

36)

synchronization overhead is not limiting speedups. Data locking reduces
contention by distributing the instances of the overly-large critical section
across multiple data structures, for example, maintaining per-hash-bucket
critical sections in a hash table, as shown in Listing 6.6. The increased
scalability again results in a slight increase in complexity in the form of an
additional data structure, the struct bucket.

In contrast with the contentious situation shown in Figure 6.13, data
locking helps promote harmony, as illustrated by Figure 6.14—and in

192

Figure 6.14: Data Locking

parallel programs, this almost always translates into increased performance
and scalability. For this reason, data locking was heavily used by Sequent
in its kernels [BK8S5, Inm85, Gar90, Dov90, MD92, MG92, MS93].

Another way of looking at this is to think of each ->bucket_lock as
mediating ownership not of the entire hash table as was done for code locking,
but only for the bucket corresponding to that ->bucket_lock. Each lock
still partitions time, but the per-bucket-locking technique also partitions
the address space, so that the overall technique can be said to partition
spacetime. If the number of buckets is large enough, this partitioning of
space should with high probability permit a given CPU immediate access to
a given hash bucket.

However, as those who have taken care of small children can again attest,
even providing enough to go around is no guarantee of tranquillity. The
analogous situation can arise in SMP programs. For example, the Linux
kernel maintains a cache of files and directories (called “dcache”). Each
entry in this cache has its own lock, but the entries corresponding to the root

193

Figure 6.15: Data Locking and Skew

directory and its direct descendants are much more likely to be traversed
than are more obscure entries. This can result in many CPUs contending
for the locks of these popular entries, resulting in a situation not unlike that
shown in Figure 6.15.

In many cases, algorithms can be designed to reduce the instance of data
skew, and in some cases eliminate it entirely (for example, in the Linux
kernel’s dcache [MSS04, Cor10a, Bro15a, Bro15b, Brol5c]). Data locking
is often used for partitionable data structures such as hash tables, as well as
in situations where multiple entities are each represented by an instance of a
given data structure. The Linux-kernel task list is an example of the latter,
each task structure having its own alloc_lock and pi_lock.

A key challenge with data locking on dynamically allocated structures
is ensuring that the structure remains in existence while the lock is being
acquired [GKAS99]. The code in Listing 6.6 finesses this challenge by
placing the locks in the statically allocated hash buckets, which are never
freed. However, this trick would not work if the hash table were resizeable,
so that the locks were now dynamically allocated. In this case, there would

194

need to be some means to prevent the hash bucket from being freed during
the time that its lock was being acquired.

Quick Quiz 6.17: What are some ways of preventing a structure from being
freed while its lock is being acquired? W

6.3.4 Data Ownership

Data ownership partitions a given data structure over the threads or CPUs,
so that each thread/CPU accesses its subset of the data structure without
any synchronization overhead whatsoever. However, if one thread wishes to
access some other thread’s data, the first thread is unable to do so directly.
Instead, the first thread must communicate with the second thread, so that the
second thread performs the operation on behalf of the first, or, alternatively,
migrates the data to the first thread.
Data ownership might seem arcane, but it is used very frequently:

1. Any variables accessible by only one CPU or thread (such as auto
variables in C and C++) are owned by that CPU or process.

2. An instance of a user interface owns the corresponding user’s context.
It is very common for applications interacting with parallel database
engines to be written as if they were entirely sequential programs. Such
applications own the user interface and his current action. Explicit
parallelism is thus confined to the database engine itself.

3. Parametric simulations are often trivially parallelized by granting
each thread ownership of a particular region of the parameter space.
There are also computing frameworks designed for this type of prob-
lem [UniO8a].

If there is significant sharing, communication between the threads or
CPUs can result in significant complexity and overhead. Furthermore, if
the most-heavily used data happens to be that owned by a single CPU, that
CPU will be a “hot spot”, sometimes with results resembling that shown
in Figure 6.15. However, in situations where no sharing is required, data
ownership achieves ideal performance, and with code that can be as simple

195

as the sequential-program case shown in Listing 6.4. Such situations are
often referred to as “embarrassingly parallel”, and, in the best case, resemble
the situation previously shown in Figure 6.14.

Another important instance of data ownership occurs when the data is
read-only, in which case, all threads can “own” it via replication.

Where data locking partitions both the address space (with one hash
buckets per partition) and time (using per-bucket locks), data ownership
partitions only the address space. The reason that data ownership need
not partition time is because a given thread or CPU is assigned permanent
ownership of a given address-space partition.

Quick Quiz 6.18: But won’t system boot and shutdown (or application startup
and shutdown) be partitioning time, even for data ownership? W

Data ownership will be presented in more detail in Chapter 8.

6.3.5 Locking Granularity and Performance

This section looks at locking granularity and performance from a mathemat-
ical synchronization-efficiency viewpoint. Readers who are uninspired by
mathematics might choose to skip this section.

The approach is to use a crude queueing model for the efficiency of
synchronization mechanism that operate on a single shared global variable,
based on an M/M/1 queue. M/M/1 queuing models are based on an expo-
nentially distributed “inter-arrival rate” A and an exponentially distributed
“service rate” y. The inter-arrival rate A can be thought of as the average
number of synchronization operations per second that the system would
process if the synchronization were free, in other words, A is an inverse
measure of the overhead of each non-synchronization unit of work. For
example, if each unit of work was a transaction, and if each transaction
took one millisecond to process, excluding synchronization overhead, then
A would be 1,000 transactions per second.

The service rate u is defined similarly, but for the average number of
synchronization operations per second that the system would process if the
overhead of each transaction was zero, and ignoring the fact that CPUs
must wait on each other to complete their synchronization operations, in

196

other words, y can be roughly thought of as the synchronization overhead
in absence of contention. For example, suppose that each transaction’s
synchronization operation involves an atomic increment instruction, and
that a computer system is able to do a private-variable atomic increment
every 5 nanoseconds on each CPU (see Figure 5.1).!> The value of y is
therefore about 200,000,000 atomic increments per second.

Of course, the value of A increases as increasing numbers of CPUs
increment a shared variable because each CPU is capable of processing
transactions independently (again, ignoring synchronization):

A= ndy 6.1)

Here, n is the number of CPUs and Ay is the transaction-processing
capability of a single CPU. Note that the expected time for a single CPU to
execute a single transaction in the absence of contention is 1/4¢.

Because the CPUs have to “wait in line” behind each other to get their
chance to increment the single shared variable, we can use the M/M/1
queueing-model expression for the expected total waiting time:

T=—— 6.2
e 62)
Substituting the above value of A:
1
Tr=—— (6.3)
H—ndo

Now, the efficiency is just the ratio of the time required to process
a transaction in absence of synchronization (1/1y) to the time required
including synchronization (7 + 1/4p):
1/9

e= m 6.4)

13 of course, if there are 8§ CPUs all incrementing the same shared variable, then each
CPU must wait at least 35 nanoseconds for each of the other CPUs to do its increment before
consuming an additional 5 nanoseconds doing its own increment. In fact, the wait will be
longer due to the need to move the variable from one CPU to another.

197

!
'75

50 |
25 1 -
10 | |

[i R I
cloololololoNole]
—TANMITOONOD

Synchronization Efficiency

100

Number of CPUs (Threads)

Figure 6.16: Synchronization Efficiency

Substituting the above value for 7 and simplifying:

U

—-n
e=—N (6.5)

E-m-1

But the value of u/Ay is just the ratio of the time required to process the
transaction (absent synchronization overhead) to that of the synchronization
overhead itself (absent contention). If we call this ratio f, we have:

__Jf-n
S f-(n-1)

Figure 6.16 plots the synchronization efficiency e as a function of
the number of CPUs/threads n for a few values of the overhead ratio
f. For example, again using the 5-nanosecond atomic increment, the
f =10 line corresponds to each CPU attempting an atomic increment every
50 nanoseconds, and the f = 100 line corresponds to each CPU attempting
an atomic increment every 500 nanoseconds, which in turn corresponds
to some hundreds (perhaps thousands) of instructions. Given that each

e (6.6)

198

1.2 T T ITIT T TTTTT T

Matrix Multiply Efficiency

1 1 100
Number of CPUs (Threads)

Figure 6.17: Matrix Multiply Efficiency

trace drops off sharply with increasing numbers of CPUs or threads, we can
conclude that synchronization mechanisms based on atomic manipulation
of a single global shared variable will not scale well if used heavily on
current commodity hardware. This is an abstract mathematical depiction of
the forces leading to the parallel counting algorithms that were discussed in
Chapter 5. Your real-world mileage may differ.

Nevertheless, the concept of efficiency is useful, and even in cases having
little or no formal synchronization. Consider for example a matrix multiply,
in which the columns of one matrix are multiplied (via “dot product”) by the
rows of another, resulting in an entry in a third matrix. Because none of these
operations conflict, it is possible to partition the columns of the first matrix
among a group of threads, with each thread computing the corresponding
columns of the result matrix. The threads can therefore operate entirely
independently, with no synchronization overhead whatsoever, as is done in
matmul . c. One might therefore expect a perfect efficiency of 1.0.

However, Figure 6.17 tells a different story, especially for a 64-by-64
matrix multiply, which never gets above an efficiency of about 0.3, even when

199

running single-threaded, and drops sharply as more threads are added.'*
The 128-by-128 matrix does better, but still fails to demonstrate much
performance increase with added threads. The 256-by-256 matrix does
scale reasonably well, but only up to a handful of CPUs. The 512-by-512
matrix multiply’s efficiency is measurably less than 1.0 on as few as 10
threads, and even the 1024-by-1024 matrix multiply deviates noticeably
from perfection at a few tens of threads. Nevertheless, this figure clearly
demonstrates the performance and scalability benefits of batching: If you
must incur synchronization overhead, you may as well get your money’s
worth.

Quick Quiz 6.19: How can a single-threaded 64-by-64 matrix multiple possibly
have an efficiency of less than 1.0? Shouldn’t all of the traces in Figure 6.17 have
efficiency of exactly 1.0 when running on one thread? H

Given these inefficiencies, it is worthwhile to look into more-scalable
approaches such as the data locking described in Section 6.3.3 or the
parallel-fastpath approach discussed in the next section.

Quick Quiz 6.20: How are data-parallel techniques going to help with matrix
multiply? It is already data parallel!!! H

‘ Quick Quiz 6.21: What did you do to validate this matrix multiply algorithm?
|

6.4 Parallel Fastpath

There are two ways of meeting difficulties: You alter
the difficulties, or you alter yourself to meet them.

Phyllis Bottome

Fine-grained (and therefore usually higher-performance) designs are typi-
cally more complex than are coarser-grained designs. In many cases, most

14 In contrast to the smooth traces of Figure 6.16, the wide error bars and jagged traces of
Figure 6.17 gives evidence of its real-world nature.

200

SR
Reader/Writer

Locking
N/

Y
RCU

Parallel N
Fastpath
R
Hierarchical

Locking
N

\

Allocator

Caches
-

Figure 6.18: Parallel-Fastpath Design Patterns

of the overhead is incurred by a small fraction of the code [Knu73]. So why
not focus effort on that small fraction?

This is the idea behind the parallel-fastpath design pattern, to aggressively
parallelize the common-case code path without incurring the complexity
that would be required to aggressively parallelize the entire algorithm. You
must understand not only the specific algorithm you wish to parallelize, but
also the workload that the algorithm will be subjected to. Great creativity
and design effort is often required to construct a parallel fastpath.

Parallel fastpath combines different patterns (one for the fastpath, one
elsewhere) and is therefore a template pattern. The following instances
of parallel fastpath occur often enough to warrant their own patterns, as
depicted in Figure 6.18:

1. Reader/Writer Locking (described below in Section 6.4.1).

2. Read-copy update (RCU), which may be used as a high-performance
replacement for reader/writer locking, is introduced in Section 9.5.
Other alternatives include hazard pointers (Section 9.3) and sequence

201

locking (Section 9.4). These alternatives will not be discussed further
in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched upon in Sec-
tion 6.4.2.

4. Resource Allocator Caches ([McK96a, MS93]). See Section 6.4.3 for
more detail.

6.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example, if the program
uses coarse-grained parallelism with large critical sections), and if only a
small fraction of the critical sections modify data, then allowing multiple
readers to proceed in parallel can greatly increase scalability. Writers
exclude both readers and each other. There are many implementations of
reader-writer locking, including the POSIX implementation described in
Section 4.2.4. Listing 6.7 shows how the hash search might be implemented
using reader-writer locking.

Reader/writer locking is a simple instance of asymmetric locking. Sna-
man [ST87] describes a more ornate six-mode asymmetric locking design
used in several clustered systems. Locking in general and reader-writer
locking in particular is described extensively in Chapter 7.

6.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-grained lock that
is held only long enough to work out which fine-grained lock to acquire.
Listing 6.8 shows how our hash-table search might be adapted to do
hierarchical locking, but also shows the great weakness of this approach:
We have paid the overhead of acquiring a second lock, but we only hold it
for a short time. In this case, the data-locking approach would be simpler
and likely perform better.

[Quick Quiz 6.22: In what situation would hierarchical locking work well? W]

202

Listing 6.7: Reader-Writer-Locking Hash Table Search

1
2
3
4
5

rwlock_t hash_lock;

struct hash_table

{

};

long nbuckets;
struct node **buckets;

typedef struct node {

unsigned long key;
struct node *next;

} node_t;

int hash_search(struct hash_table *h, long key)

{

}

struct node *cur;
int retval;

read_lock(&hash_lock);
cur = h->buckets[key % h->nbuckets];
while (cur != NULL) {
if (cur->key >= key) {
retval = (cur->key == key);
read_unlock(&hash_lock) ;
return retval;

}

cur = cur->next;
¥
read_unlock(&hash_lock) ;
return O;

Listing 6.8: Hierarchical-Locking Hash Table Search
struct hash_table

1
2 {

3 long nbuckets;

4 struct bucket **buckets;
5}

6

7 struct bucket {

8 spinlock_t bucket_lock;
9 node_t *1list_head;

10 };

11

12 typedef struct node {

13 spinlock_t node_lock;

14 unsigned long key;

15 struct node *next;

16 } node_t;

18 int hash_search(struct hash_table *h, long key)

19 {

20 struct bucket *bp;

21 struct node *cur;

22 int retval;

23

24 bp = h->buckets[key % h->nbuckets];

25 spin_lock(&bp->bucket_lock) ;

26 cur = bp->list_head;

27 while (cur != NULL) {

2 if (cur->key >= key) {

29 spin_lock(&cur->node_lock) ;
30 spin_unlock (&bp->bucket_lock) ;
31 retval = (cur->key == key);
32 spin_unlock(&cur->node_lock) ;
33 return retval;

34 }

35 cur = cur->next;

36 }

37 spin_unlock (&bp->bucket_lock) ;

38 return 0;

204

6.4.3 Resource Allocator Caches

This section presents a simplified schematic of a parallel fixed-block-
size memory allocator. More detailed descriptions may be found in the
literature [MG92, MS93, BAO1, MSKO1, Evall, Ken20] or in the Linux
kernel [Tor03].

6.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is the tension between
the need to provide extremely fast memory allocation and freeing in the
common case and the need to efficiently distribute memory in face of
unfavorable allocation and freeing patterns.

To see this tension, consider a straightforward application of data own-
ership to this problem—simply carve up memory so that each CPU owns
its share. For example, suppose that a system with 12 CPUs has 64 gi-
gabytes of memory, for example, the laptop I am using right now. We
could simply assign each CPU a five-gigabyte region of memory, and allow
each CPU to allocate from its own region, without the need for locking
and its complexities and overheads. Unfortunately, this scheme fails when
CPU 0 only allocates memory and CPU 1 only frees it, as happens in simple
producer-consumer workloads.

The other extreme, code locking, suffers from excessive lock contention
and overhead [MS93].

6.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with each CPU owning
a modest cache of blocks, and with a large code-locked shared pool for
additional blocks. To prevent any given CPU from monopolizing the
memory blocks, we place a limit on the number of blocks that can be in
each CPU’s cache. In a two-CPU system, the flow of memory blocks will
be as shown in Figure 6.19: When a given CPU is trying to free a block
when its pool is full, it sends blocks to the global pool, and, similarly, when
that CPU is trying to allocate a block when its pool is empty, it retrieves
blocks from the global pool.

205

Global Pool

Y W

|
i
P
z ! z
2 ! (Code Locked) S
5] L] 5]
> >
(@] (@]
e RA
i i
I CPU 0 Pool I CPU 1 Pool :
| .
i | i
| (Owned by CPU 0) | (Owned by CPU 1) !
L —

Allocate/Free

Figure 6.19: Allocator Cache Schematic

6.4.3.3 Data Structures

The actual data structures for a “toy” implementation of allocator caches are
shown in Listing 6.9 (“smpalloc.c”). The “Global Pool” of Figure 6.19
is implemented by globalmem of type struct globalmempool, and
the two CPU pools by the per-thread variable perthreadmem of type
struct perthreadmempool. Both of these data structures have arrays
of pointers to blocks in their pool fields, which are filled from index zero
upwards. Thus, if globalmem.pool[3] is NULL, then the remainder of
the array from index 4 up must also be NULL. The cur fields contain the
index of the highest-numbered full element of the pool array, or —1 if
all elements are empty. All elements from globalmem.pool[0] through

206

Listing 6.9: Allocator-Cache Data Structures

1 #define TARGET_POOL_SIZE 3
2 #define GLOBAL_POOL_SIZE 40
3

4 struct globalmempool {

5 spinlock_t mutex;

6 int cur;
7
8

struct memblock *pool[GLOBAL_POOL_SIZE];

} globalmem;
9
10 struct perthreadmempool {
11 int cur;
12 struct memblock *pool[2 * TARGET_POOL_SIZE];
13 };
14
15 DEFINE_PER_THREAD (struct perthreadmempool, perthreadmem) ;

globalmem.pool [globalmem. cur] must be full, and all the rest must be
empty. >

The operation of the pool data structures is illustrated by Figure 6.20, with
the six boxes representing the array of pointers making up the pool field,
and the number preceding them representing the cur field. The shaded
boxes represent non-NULL pointers, while the empty boxes represent NULL
pointers. An important, though potentially confusing, invariant of this data
structure is that the cur field is always one smaller than the number of
non-NULL pointers.

6.4.3.4 Allocation Function

The allocation function memblock_alloc() may be seen in Listing 6.10.
Line 7 picks up the current thread’s per-thread pool, and line 8 checks to
see if it is empty.

If so, lines 9-16 attempt to refill it from the global pool under the spinlock
acquired on line 9 and released on line 16. Lines 10-14 move blocks from
the global to the per-thread pool until either the local pool reaches its target

15 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_SIZE) are unrealistically
small, but this small size makes it easier to single-step the program in order to get a feel for its
operation.

207

(Empty) -1 ’

° |

"

? |

* |

¢

LT[]
| [[[] |
= [[[|
=T [
e [
| [|
]

® |

Figure 6.20: Allocator Pool Schematic

size (half full) or the global pool is exhausted, and line 15 sets the per-thread
pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool still being empty,
and if not, lines 19-21 remove a block and return it. Otherwise, line 23 tells
the sad tale of memory exhaustion.

6.4.3.5 Free Function

Listing 6.11 shows the memory-block free function. Line 6 gets a pointer to
this thread’s pool, and line 7 checks to see if this per-thread pool is full.

If so, lines 8—15 empty half of the per-thread pool into the global pool,
with lines 8 and 14 acquiring and releasing the spinlock. Lines 9-12
implement the loop moving blocks from the local to the global pool, and
line 13 sets the per-thread pool’s count to the proper value.

In either case, line 16 then places the newly freed block into the per-thread
pool.

Quick Quiz 6.23: Doesn’t this resource-allocator design resemble that of the
approximate limit counters covered in Section 5.3? H

208

Listing 6.10: Allocator-Cache Allocator Function

1
2
3
4
5
6
7
8
9

10
11
12
13

s
{

truct memblock *memblock_alloc(void)

int i;
struct memblock *p;
struct perthreadmempool *pcpp;

pepp = &__get_thread_var(perthreadmem) ;
if (pepp—>cur < 0) {
spin_lock(&globalmem.mutex) ;
for (i = 0; i < TARGET_POOL_SIZE &&
globalmem.cur >= 0; i++) {
pepp->pool[i] = globalmem.pool[globalmem.cur];
globalmem.pool [globalmem.cur--] = NULL;
}
pcpp—>cur =i - 1;
spin_unlock(&globalmem.mutex) ;
¥
if (pcpp->cur >= 0) {
p = pcpp->pool [pcpp->curl;
pcpp->pool [pcpp->cur--] = NULL;
return p;
¥
return NULL;

Listing 6.11: Allocator-Cache Free Function

1
2
3
4
5
6
7
8
9

10
11

void memblock_free(struct memblock *p)

{

int i;
struct perthreadmempool *pcpp;

pcpp = &__get_thread_var (perthreadmem) ;
if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {
spin_lock(&globalmem.mutex) ;
for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
globalmem.pool [++globalmem.cur] = pcpp->pooll[il;
pepp->pool[i] = NULL;

pcpp->cur = ij;
spin_unlock(&globalmem.mutex) ;
}
pepp->pool [++pcpp->cur] = p;

209

30 T T T T
T SXXXXX %
S 25t -
Q
7]
o
S 2| _
S 0
k4 +++
15 T -
[0}
o
(TR
s 10 F +HX o -
£ T e
§ 5 X —
= XX XR K5 XXX

0 ! ! ! !

0 5 10 15 20 25

Allocation Run Length

Figure 6.21: Allocator Cache Performance

6.4.3.6 Performance

Rough performance results'® are shown in Figure 6.21, running on a dual-
core Intel x86 running at 1 GHz (4300 bogomips per CPU) with at most
six blocks allowed in each CPU’s cache. In this micro-benchmark, each
thread repeatedly allocates a group of blocks and then frees all the blocks in
that group, with the number of blocks in the group being the “allocation
run length” displayed on the x-axis. The y-axis shows the number of
successful allocation/free pairs per microsecond—failed allocations are not
counted. The “X”’s are from a two-thread run, while the “+”’s are from a
single-threaded run.

Note that run lengths up to six scale linearly and give excellent perfor-
mance, while run lengths greater than six show poor performance and
almost always also show negative scaling. It is therefore quite important

16 This data was not collected in a statistically meaningful way, and therefore should be
viewed with great skepticism and suspicion. Good data-collection and -reduction practice is
discussed in Chapter 11. That said, repeated runs gave similar results, and these results match
more careful evaluations of similar algorithms.

210

to size TARGET_POOL_SIZE sufficiently large, which fortunately is usu-
ally quite easy to do in actual practice [MSKO1], especially given today’s
large memories. For example, in most systems, it is quite reasonable to
set TARGET_POOL_SIZE to 100, in which case allocations and frees are
guaranteed to be confined to per-thread pools at least 99 % of the time.

As can be seen from the figure, the situations where the common-case
data-ownership applies (run lengths up to six) provide greatly improved
performance compared to the cases where locks must be acquired. Avoiding
synchronization in the common case will be a recurring theme through this
book.

Quick Quiz 6.24: In Figure 6.21, there is a pattern of performance rising with

increasing run length in groups of three samples, for example, for run lengths 10,
11,and 12. Why? W

Quick Quiz 6.25: Allocation failures were observed in the two-thread tests at
run lengths of 19 and greater. Given the global-pool size of 40 and the per-thread
target pool size s of three, number of threads n equal to two, and assuming that the
per-thread pools are initially empty with none of the memory in use, what is the
smallest allocation run length m at which failures can occur? (Recall that each
thread repeatedly allocates m block of memory, and then frees the m blocks of
memory.) Alternatively, given n threads each with pool size s, and where each
thread repeatedly first allocates m blocks of memory and then frees those m blocks,
how large must the global pool size be? Note: Obtaining the correct answer will
require you to examine the smpalloc.c source code, and very likely single-step
it as well. You have been warned! W

6.4.3.7 Validation

Validation of this simple allocator spawns a specified number of threads,
with each thread repeatedly allocating a specified number of memory blocks
and then deallocating them. This simple regimen suffices to exercise both
the per-thread caches and the global pool, as can be seen in Figure 6.21.

Much more aggressive validation is required for memory allocators that
are to be used in production. The test suites for tcmalloc [Ken20] and
jemalloc [Evall] are instructive, as are the tests for the Linux kernel’s
memory allocator.

6.4.3.8 Real-World Design

The toy parallel resource allocator was quite simple, but real-world designs
expand on this approach in a number of ways.

First, real-world allocators are required to handle a wide range of allocation
sizes, as opposed to the single size shown in this toy example. One popular
way to do this is to offer a fixed set of sizes, spaced so as to balance
external and internal fragmentation, such as in the late-1980s BSD memory
allocator [MK88]. Doing this would mean that the “globalmem” variable
would need to be replicated on a per-size basis, and that the associated lock
would similarly be replicated, resulting in data locking rather than the toy
program’s code locking.

Second, production-quality systems must be able to repurpose memory,
meaning that they must be able to coalesce blocks into larger structures,
such as pages [MS93]. This coalescing will also need to be protected by a
lock, which again could be replicated on a per-size basis.

Third, coalesced memory must be returned to the underlying memory
system, and pages of memory must also be allocated from the underlying
memory system. The locking required at this level will depend on that of the
underlying memory system, but could well be code locking. Code locking
can often be tolerated at this level, because this level is so infrequently
reached in well-designed systems [MSKO1].

Concurrent userspace allocators face similar challenges [Ken20, Evall].

Despite this real-world design’s greater complexity, the underlying idea is
the same—repeated application of parallel fastpath, as shown in Table 6.1.

Table 6.1: Schematic of Real-World Parallel Allocator

Level Locking Purpose

Per-thread pool Data ownership High-speed
allocation

Global block pool Data locking Distributing blocks
among threads

Coalescing Data locking Combining blocks
into pages

System memory Code locking Memory from/to
system

6.5 Beyond Partitioning

It is all right to aim high if you have plenty of
ammunition.

Hawley R. Everhart

This chapter has discussed how data partitioning can be used to design simple
linearly scalable parallel programs. Section 6.3.4 hinted at the possibilities
of data replication, which will be used to great effect in Section 9.5.

The main goal of applying partitioning and replication is to achieve linear
speedups, in other words, to ensure that the total amount of work required
does not increase significantly as the number of CPUs or threads increases.
A problem that can be solved via partitioning and/or replication, resulting
in linear speedups, is embarrassingly parallel. But can we do better?

To answer this question, let us examine the solution of labyrinths and
mazes. Of course, labyrinths and mazes have been objects of fascination
for millennia [Wik12], so it should come as no surprise that they are gener-
ated and solved using computers, including biological computers [Adal1],
GPGPUs [Eri08], and even discrete hardware [KFC11]. Parallel solution of
mazes is sometimes used as a class project in universities [ETH11, Unil0]

Listing 6.12: SEQ Pseudocode

| int maze_solve(maze *mp, cell sc, cell ec)

2 {

3 cell ¢ = sc;

4 cell n;

5 int vi = 0;

6

7 maze_try_visit_cell(mp, ¢, c, &n, 1);
8 for (5;) {

9 while ('maze_find_any_next_cell(mp, c, &n)) {
10 if (++vi >= mp->vi)

11 return O;

12 ¢ = mp->visited[vi].c;
13 }

14 do {

15 if (n == ec) {

16 return 1;

17 }

18 c =n;

19 } while (maze_find_any_next_cell(mp, c, &n));
20 ¢ = mp->visited[vi].c;

21 }

2 }

and as a vehicle to demonstrate the benefits of parallel-programming frame-
works [Fos10].

Common advice is to use a parallel work-queue algorithm (PWQ) [ETH11,
Fos10]. This section evaluates this advice by comparing PWQ against a
sequential algorithm (SEQ) and also against an alternative parallel algo-
rithm, in all cases solving randomly generated square mazes. Section 6.5.1
discusses PWQ, Section 6.5.2 discusses an alternative parallel algorithm,
Section 6.5.4 analyzes its anomalous performance, Section 6.5.5 derives an
improved sequential algorithm from the alternative parallel algorithm, Sec-
tion 6.5.6 makes further performance comparisons, and finally Section 6.5.7
presents future directions and concluding remarks.

6.5.1 Work-Queue Parallel Maze Solver

PWQ is based on SEQ, which is shown in Listing 6.12 (pseudocode for
maze_seq.c). The maze is represented by a 2D array of cells and a
linear-array-based work queue named ->visited.

Listing 6.13: SEQ Helper Pseudocode

int maze_try_visit_cell(struct maze *mp, cell c, cell t,

1

2 cell *n, int d)

3 {

4 if (!maze_cells_connected(mp, c, t) ||

5 (*celladdr(mp, t) & VISITED))

6 return O;

7 *n = t;

8 mp->visited[mp->vi] = t;

9 mp->vit++;

10 *celladdr (mp, t) |= VISITED | d;

11 return 1;

2}

13

14 int maze_find_any_next_cell(struct maze *mp, cell c,

15 cell *n)

16 {

17 int d = (*celladdr(mp, c) & DISTANCE) + 1;

18

19 if (maze_try_visit_cell(mp, c, prevcol(c), n, d))
20 return 1;

21 if (maze_try_visit_cell(mp, c, nextcol(c), n, d))
22 return 1;

23 if (maze_try_visit_cell(mp, c, prevrow(c), n, d))
24 return 1;

25 if (maze_try_visit_cell(mp, c, nextrow(c), n, d))
26 return 1;

27 return 0;

28 }

Line 7 visits the initial cell, and each iteration of the loop spanning
lines 8-21 traverses passages headed by one cell. The loop spanning
lines 9—13 scans the ->visited[] array for a visited cell with an unvisited
neighbor, and the loop spanning lines 14—19 traverses one fork of the
submaze headed by that neighbor. Line 20 initializes for the next pass
through the outer loop.

The pseudocode for maze_try_visit_cell() is shown on lines 1-12
of Listing 6.13 (maze. c). Line 4 checks to see if cells c and t are adjacent
and connected, while line 5 checks to see if cell t has not yet been visited.
The celladdr () function returns the address of the specified cell. If either
check fails, line 6 returns failure. Line 7 indicates the next cell, line 8
records this cell in the next slot of the ->visited[] array, line 9 indicates
that this slot is now full, and line 10 marks this cell as visited and also
records the distance from the maze start. Line 11 then returns success.

Figure 6.22: Cell-Number Solution Tracking

The pseudocode for maze_find_any_next_cell() is shown on
lines 14-28 of Listing 6.13 (maze.c). Line 17 picks up the current
cell’s distance plus 1, while lines 19, 21, 23, and 25 check the cell in each
direction, and lines 20, 22, 24, and 26 return true if the corresponding cell
is a candidate next cell. The prevcol(), nextcol(), prevrow(), and
nextrow() each do the specified array-index-conversion operation. If none
of the cells is a candidate, line 27 returns false.

The path is recorded in the maze by counting the number of cells from
the starting point, as shown in Figure 6.22, where the starting cell is in the
upper left and the ending cell is in the lower right. Starting at the ending cell
and following consecutively decreasing cell numbers traverses the solution.

The parallel work-queue solver is a straightforward parallelization of the
algorithm shown in Listings 6.12 and 6.13. Line 10 of Listing 6.12 must use
fetch-and-add, and the local variable vi must be shared among the various
threads. Lines 5 and 10 of Listing 6.13 must be combined into a CAS loop,
with CAS failure indicating a loop in the maze. Lines 8-9 of this listing
must use fetch-and-add to arbitrate concurrent attempts to record cells in
the ->visited[] array.

This approach does provide significant speedups on a dual-CPU Lenovo
WS500 running at 2.53 GHz, as shown in Figure 6.23, which shows the
cumulative distribution functions (CDFs) for the solution times of the
two algorithms, based on the solution of 500 different square 500-by-500
randomly generated mazes. The substantial overlap of the projection of the
CDFs onto the x-axis will be addressed in Section 6.5.4.

216

09
08 -
0.7 -
0.6 -
05 -
04
03
02
0.1

0) I I I I
0 20 40 60 80 100 120 140

CDF of Solution Time (ms)

Figure 6.23: CDF of Solution Times For SEQ and PWQ

Probability

Interestingly enough, the sequential solution-path tracking works un-
changed for the parallel algorithm. However, this uncovers a significant
weakness in the parallel algorithm: At most one thread may be making
progress along the solution path at any given time. This weakness is
addressed in the next section.

6.5.2 Alternative Parallel Maze Solver

Youthful maze solvers are often urged to start at both ends, and this
advice has been repeated more recently in the context of automated maze
solving [Unil0]. This advice amounts to partitioning, which has been a
powerful parallelization strategy in the context of parallel programming
for both operating-system kernels [BK85, Inm85] and applications [Pat10].
This section applies this strategy, using two child threads that start at opposite
ends of the solution path, and takes a brief look at the performance and
scalability consequences.

The partitioned parallel algorithm (PART), shown in Listing 6.14 (maze_
part.c), is similar to SEQ, but has a few important differences. First,
each child thread has its own visited array, passed in by the parent as
shown on line 1, which must be initialized to all [-1, —1]. Line 7 stores a

Listing 6.14: Partitioned Parallel Solver Pseudocode

| int maze_solve_child(maze *mp, cell *visited, cell sc)
2 {

3 cell c;

4 cell n;

5 int vi = 0;

6

7 myvisited = visited; myvi = &vi;

8 c = visited[vil;

9 do {

10 while (!maze_find_any_next_cell(mp, c, &n)) {
11 if (visited[++vi].row < 0)

12 return 0;

13 if (READ_ONCE(mp->done))

14 return 1;

15 c = visited[vi];

16 }

17 do {

18 if (READ_ONCE (mp->done))

19 return 1;

20 c = n;

21 } while (maze_find_any_next_cell(mp, c, &n));
2 c = visited[vil;

23 } while (!READ_ONCE(mp->done));

24 return 1;

25 }

pointer to this array into the per-thread variable myvisited to allow access
by helper functions, and similarly stores a pointer to the local visit index.
Second, the parent visits the first cell on each child’s behalf, which the child
retrieves on line 8. Third, the maze is solved as soon as one child locates
a cell that has been visited by the other child. When maze_try_visit_
cell () detects this, it sets a —>done field in the maze structure. Fourth,
each child must therefore periodically check the ->done field, as shown
on lines 13, 18, and 23. The READ_ONCE() primitive must disable any
compiler optimizations that might combine consecutive loads or that might
reload the value. A C++1x volatile relaxed load suffices [Smil9]. Finally,
the maze_find_any_next_cell() function must use compare-and-swap
to mark a cell as visited, however no constraints on ordering are required
beyond those provided by thread creation and join.

The pseudocode for maze_find_any_next_cell() is identical to that
shown in Listing 6.13, but the pseudocode for maze_try_visit_cell()
differs, and is shown in Listing 6.15. Lines 8-9 check to see if the cells are

218

Listing 6.15: Partitioned Parallel Helper Pseudocode

int maze_try_visit_cell(struct maze *mp, int c, int t,

1
2 int *n, int d)

3 {

4 cell_t t;

5 cell_t *tp;

6 int vi;

7

3 if (!'maze_cells_connected(mp, c, t))
9 return 0;

10 tp = celladdr(mp, t);

1 do {

12 t = READ_ONCE (*tp) ;

13 if (t & VISITED) {

14 if ((t & TID) != mytid)
15 mp->done = 1;
16 return 0;

17 }

18 } while (!CAS(tp, t, t | VISITED | myid | d));
19 *n = t;

20 vi = (*myvi)++;

21 myvisited[vi] = t;

22 return 1;

23}

connected, returning failure if not. The loop spanning lines 11-18 attempts
to mark the new cell visited. Line 13 checks to see if it has already been
visited, in which case line 16 returns failure, but only after line 14 checks to
see if we have encountered the other thread, in which case line 15 indicates
that the solution has been located. Line 19 updates to the new cell, lines 20
and 21 update this thread’s visited array, and line 22 returns success.

Performance testing revealed a surprising anomaly, shown in Figure 6.24.
The median solution time for PART (17 milliseconds) is more than four
times faster than that of SEQ (79 milliseconds), despite running on only two
threads.

The first reaction to such a dramatic performance anomaly is to check for
bugs, which suggests stringent validation be applied. This is the topic of the
next section.

219

o o
© ©
T T

Probability
o
(6]
T

0 L I I I I
0 20 40 60 80 100 120 140
CDF of Solution Time (ms)

Figure 6.24: CDF of Solution Times For SEQ, PWQ, and PART

6.5.3 Maze Validation

Much of the validation effort comprised consistency checks, which can be
located by searching for ABORT () in CodeSamples/SMPdesign/maze/*.
c. Examples checks include:

1. Maze solution steps that end up outside of the maze.

2. Mazes that suddenly have zero or fewer rows or columns.
3. Newly created mazes with unreachable cells.

4. Mazes that have no solution.

5. Discontinuous maze solutions.

6. Attempts to start the maze solver outside of the maze.

7. Mazes whose solution path is longer than the number of cells in the
maze.

8. Subsolutions by different threads cross each other.

9. Memory-allocation failure.

0.9 /
0.8
0.7 |- :
0.6
0.5 | SEQ/PWQ ‘/ISEQ/PART —

1

04 |- k
03
02| /
0.1 /

Probability
T

0 A EEET) Ja a0 N EEET]
0.1 1 10 100

CDF of Speedup Relative to SEQ

Figure 6.25: CDF of SEQ/PWQ and SEQ/PART Solution-Time Ratios

10. System-call failure.

Additional manual validation was applied by Paul’s wife, who greatly
enjoys solving puzzles.

However, if this maze software was to be used in production, whatever
that might mean, it would be wise to construct an independent maze fsck
program. Nevertheless, the mazes and solutions all proved to be quite valid.
The next section therefore more deeply analyzes the scalability anomaly

called out in Section 6.5.2.

6.5.4 Performance Comparison I

Although the algorithms were in fact finding valid solutions to valid mazes,
the plot of CDFs in Figure 6.24 assumes independent data points. This is
not the case: The performance tests randomly generate a maze, and then
run all solvers on that maze. It therefore makes sense to plot the CDF of the
ratios of solution times for each generated maze, as shown in Figure 6.25,
greatly reducing the CDFs’ overlap. This plot reveals that for some mazes,
PART is more than forty times faster than SEQ. In contrast, PWQ is never
more than about two times faster than SEQ. A forty-times speedup on two
threads demands explanation. After all, this is not merely embarrassingly

221

e.

!
S

=N
l_l:i:

M ——T—T—T T T T T
120
100 [~
80 [~

60

Solution Time (ms)

40

20 [~

0 | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Percent of Maze Cells Visited

Figure 6.27: Correlation Between Visit Percentage and Solution Time

parallel, where partitionability means that adding threads does not increase
the overall computational cost. It is instead humiliatingly parallel: Adding
threads significantly reduces the overall computational cost, resulting in
large algorithmic superlinear speedups.

Further investigation showed that PART sometimes visited fewer than
2 % of the maze’s cells, while SEQ and PWQ never visited fewer than
about 9 %. The reason for this difference is shown by Figure 6.26. If the
thread traversing the solution from the upper left reaches the circle, the other
thread cannot reach the upper-right portion of the maze. Similarly, if the

229

.e._
O
o

SE=
s=pl

J-O oo f}T
]

Figure 6.28: PWQ Potential Contention Points

F____
S

other thread reaches the square, the first thread cannot reach the lower-left
portion of the maze. Therefore, PART will likely visit a small fraction of
the non-solution-path cells. In short, the superlinear speedups are due to
threads getting in each others’ way. This is a sharp contrast with decades
of experience with parallel programming, where workers have struggled to
keep threads out of each others’ way.

Figure 6.27 confirms a strong correlation between cells visited and
solution time for all three methods. The slope of PART’s scatterplot is
smaller than that of SEQ, indicating that PART’s pair of threads visits a
given fraction of the maze faster than can SEQ’s single thread. PART’s
scatterplot is also weighted toward small visit percentages, confirming that
PART does less total work, hence the observed humiliating parallelism.

The fraction of cells visited by PWQ is similar to that of SEQ. In addition,
PWQ’s solution time is greater than that of PART, even for equal visit
fractions. The reason for this is shown in Figure 6.28, which has a red circle
on each cell with more than two neighbors. Each such cell can result in
contention in PWQ, because one thread can enter but two threads can exit,
which hurts performance, as noted earlier in this chapter. In contrast, PART
can incur such contention but once, namely when the solution is located.
Of course, SEQ never contends.

Although PART’s speedup is impressive, we should not neglect sequential
optimizations. Figure 6.29 shows that SEQ, when compiled with -O3, is
about twice as fast as unoptimized PWQ, approaching the performance

0.9
0.8 v
' /
0.7 | b
0.6 ‘
05 |- PwWQ| i/
0.4 h
1
03 - i
02 |
0.1 | i 'SEQ -03 -

Probability

0 T ETET] PR AR ETET
. 1 10 100
CDF of Speedup Relative to SEQ

Figure 6.29: Effect of Compiler Optimization (-O3)

of unoptimized PART. Compiling all three algorithms with -O3 gives
results similar to (albeit faster than) those shown in Figure 6.25, except
that PWQ provides almost no speedup compared to SEQ, in keeping with
Amdahl’s Law [Amd67]. However, if the goal is to double performance
compared to unoptimized SEQ, as opposed to achieving optimality, compiler

optimizations are quite attractive.

Cache alignment and padding often improves performance by reducing
false sharing. However, for these maze-solution algorithms, aligning and
padding the maze-cell array degrades performance by up to 42 % for
1000x1000 mazes. Cache locality is more important than avoiding false
sharing, especially for large mazes. For smaller 20-by-20 or 50-by-50 mazes,
aligning and padding can produce up to a 40 % performance improvement
for PART, but for these small sizes, SEQ performs better anyway because
there is insufficient time for PART to make up for the overhead of thread

creation and destruction.

In short, the partitioned parallel maze solver is an interesting example of
an algorithmic superlinear speedup. If “algorithmic superlinear speedup”
causes cognitive dissonance, please proceed to the next section.

224

09
08 -
0.7 -
0.6 -
05 -
04
03
02
0.1

0.1 1 10 100

CDF of Speedup Relative to SEQ (-O3)

Probability

Figure 6.30: Partitioned Coroutines

6.5.5 Alternative Sequential Maze Solver

The presence of algorithmic superlinear speedups suggests simulating
parallelism via co-routines, for example, manually switching context between
threads on each pass through the main do-while loop in Listing 6.14. This
context switching is straightforward because the context consists only of
the variables ¢ and vi: Of the numerous ways to achieve the effect, this
is a good tradeoff between context-switch overhead and visit percentage.
As can be seen in Figure 6.30, this coroutine algorithm (COPART) is quite
effective, with the performance on one thread being within about 30 % of
PART on two threads (maze_2seq. c).

6.5.6 Performance Comparison II

Figures 6.31 and 6.32 show the effects of varying maze size, comparing both
PWQ and PART running on two threads against either SEQ or COPART,
respectively, with 90-percent-confidence error bars. PART shows superlinear
scalability against SEQ and modest scalability against COPART for 100-
by-100 and larger mazes. PART exceeds theoretical energy-efficiency
breakeven against COPART at roughly the 200-by-200 maze size, given
that power consumption rises as roughly the square of the frequency for

12 T

Speedup Relative to SEQ (-O3)
(=]
T

100 1000
Maze Size

Figure 6.31: Varying Maze Size vs. SEQ

=2}
T

Speedup Relative to COPART (-O3)

Figure 6.32: Varying Maze Size vs. COPART

100 1000
Maze Size

226

o 35 T T T T T T

Q

= 3l -
o

=

o 25 -
o

il

[) 2 - n
2

8 .

& Sr % T
s PART %

S 1+ X : : ///X’ -
2 1 %

2 *

@ 05 Lo owg
% 0;:\]7* i | I I I

i =+
1 2 3 4 5 6 7 8
Number of Threads

Figure 6.33: Mean Speedup vs. Number of Threads, 1000x1000 Maze

high frequencies [MudO1], so that 1.4x scaling on two threads consumes the
same energy as a single thread at equal solution speeds. In contrast, PWQ
shows poor scalability against both SEQ and COPART unless unoptimized:
Figures 6.31 and 6.32 were generated using -O3.

Figure 6.33 shows the performance of PWQ and PART relative to
COPART. For PART runs with more than two threads, the additional
threads were started evenly spaced along the diagonal connecting the
starting and ending cells. Simplified link-state routing [BG87] was used
to detect early termination on PART runs with more than two threads
(the solution is flagged when a thread is connected to both beginning and
end). PWQ performs quite poorly, but PART hits breakeven at two threads
and again at five threads, achieving modest speedups beyond five threads.
Theoretical energy efficiency breakeven is within the 90-percent-confidence
interval for seven and eight threads. The reasons for the peak at two threads
are (1) the lower complexity of termination detection in the two-thread case
and (2) the fact that there is a lower probability of the third and subsequent
threads making useful forward progress: Only the first two threads are
guaranteed to start on the solution line. This disappointing performance
compared to results in Figure 6.32 is due to the less-tightly integrated
hardware available in the larger and older Xeon system running at 2.66 GHz.

227

6.5.7 Future Directions and Conclusions

Much future work remains. First, this section applied only one technique used
by human maze solvers. Others include following walls to exclude portions
of the maze and choosing internal starting points based on the locations of
previously traversed paths. Second, different choices of starting and ending
points might favor different algorithms. Third, although placement of the
PART algorithm’s first two threads is straightforward, there are any number
of placement schemes for the remaining threads. Optimal placement might
well depend on the starting and ending points. Fourth, study of unsolvable
mazes and cyclic mazes is likely to produce interesting results. Fifth, the
lightweight C++11 atomic operations might improve performance. Sixth, it
would be interesting to compare the speedups for three-dimensional mazes
(or of even higher-order mazes). Finally, for mazes, humiliating parallelism
indicated a more-efficient sequential implementation using coroutines. Do
humiliatingly parallel algorithms always lead to more-efficient sequential
implementations, or are there inherently humiliatingly parallel algorithms
for which coroutine context-switch overhead overwhelms the speedups?

This section demonstrated and analyzed parallelization of maze-solution
algorithms. A conventional work-queue-based algorithm did well only
when compiler optimizations were disabled, suggesting that some prior
results obtained using high-level/overhead languages will be invalidated by
advances in optimization.

This section gave a clear example where approaching parallelism as a
first-class optimization technique rather than as a derivative of a sequential
algorithm paves the way for an improved sequential algorithm. High-level
design-time application of parallelism is likely to be a fruitful field of study.
This section took the problem of solving mazes from mildly scalable to
humiliatingly parallel and back again. It is hoped that this experience will
motivate work on parallelism as a first-class design-time whole-application
optimization technique, rather than as a grossly suboptimal after-the-fact
micro-optimization to be retrofitted into existing programs.

228

6.6 Partitioning, Parallelism, and Optimization

Knowledge is of no value unless you put it into
practice.

Anton Chekhov

Most important, although this chapter has demonstrated that applying
parallelism at the design level gives excellent results, this final section
shows that this is not enough. For search problems such as maze solution,
this section has shown that search strategy is even more important than
parallel design. Yes, for this particular type of maze, intelligently applying
parallelism identified a superior search strategy, but this sort of luck is no
substitute for a clear focus on search strategy itself.

As noted back in Section 2.2, parallelism is but one potential optimization
of many. A successful design needs to focus on the most important opti-
mization. Much though I might wish to claim otherwise, that optimization
might or might not be parallelism.

However, for the many cases where parallelism is the right optimization,
the next section covers that synchronization workhorse, locking.

229

Chapter 7
Locking

Locking is the worst general-purpose
synchronization mechanism except for all those other
mechanisms that have been tried from time to time.

With apologies to the memory of Winston Churchill
and to whoever he was quoting

In recent concurrency research, locking often plays the role of villain. Lock-
ing stands accused of inciting deadlocks, convoying, starvation, unfairness,
data races, and all manner of other concurrency sins. Interestingly enough,
the role of workhorse in production-quality shared-memory parallel software
is also played by locking. This chapter will look into this dichotomy between
villain and hero, as fancifully depicted in Figures 7.1 and 7.2.

There are a number of reasons behind this Jekyll-and-Hyde dichotomy:

1. Many of locking’s sins have pragmatic design solutions that work well
in most cases, for example:

(a) Use of lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the Linux kernel’s lockdep
facility [Cor0O6a].

(c) Locking-friendly data structures, such as arrays, hash tables, and
radix trees, which will be covered in Chapter 10.

2. Some of locking’s sins are problems only at high levels of contention,
levels reached only by poorly designed programs.

3. Some of locking’s sins are avoided by using other synchronization
mechanisms in concert with locking. These other mechanisms in-
clude statistical counters (see Chapter 5), reference counters (see

230

Section 9.2), hazard pointers (see Section 9.3), sequence-locking read-
ers (see Section 9.4), RCU (see Section 9.5), and simple non-blocking
data structures (see Section 14.2).

4. Until quite recently, almost all large shared-memory parallel programs
were developed in secret, so that it was not easy to learn of these
pragmatic solutions.

5. Locking works extremely well for some software artifacts and extremely
poorly for others. Developers who have worked on artifacts for which
locking works well can be expected to have a much more positive
opinion of locking than those who have worked on artifacts for which
locking works poorly, as will be discussed in Section 7.5.

6. All good stories need a villain, and locking has a long and honorable
history serving as a research-paper whipping boy.

Quick Quiz 7.1: Just how can serving as a whipping boy be considered to be in
any way honorable??? H

This chapter will give an overview of a number of ways to avoid locking’s
more serious sins.

Figure 7.2: Locking: Workhorse or Hero?

v2022.09.25ba

7.1 Staying Alive

I work to stay alive.

Bette Davis

Given that locking stands accused of deadlock and starvation, one important
concern for shared-memory parallel developers is simply staying alive. The
following sections therefore cover deadlock, livelock, starvation, unfairness,
and inefficiency.

7.1.1 Deadlock

Deadlock occurs when each member of a group of threads is holding at least
one lock while at the same time waiting on a lock held by a member of that
same group. This happens even in groups containing a single thread when
that thread attempts to acquire a non-recursive lock that it already holds.
Deadlock can therefore occur even given but one thread and one lock!

Without some sort of external intervention, deadlock is forever. No thread
can acquire the lock it is waiting on until that lock is released by the thread
holding it, but the thread holding it cannot release it until the holding thread
acquires the lock that it is in turn waiting on.

We can create a directed-graph representation of a deadlock scenario with
nodes for threads and locks, as shown in Figure 7.3. An arrow from a lock
to a thread indicates that the thread holds the lock, for example, Thread B
holds Locks 2 and 4. An arrow from a thread to a lock indicates that the
thread is waiting on the lock, for example, Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one deadlock cycle. In
Figure 7.3, this cycle is Thread B, Lock 3, Thread C, Lock 4, and back to
Thread B.

Quick Quiz 7.2: But the definition of lock-based deadlock only said that each
thread was holding at least one lock and waiting on another lock that was held by
some thread. How do you know that there is a cycle? Wl

Although there are some software environments such as database systems
that can recover from an existing deadlock, this approach requires either that

9
N}

Lock 1
Thread A %[Lock 2]
[Lock 3]e Thread B
Thread C %[Lock 4]

Figure 7.3: Deadlock Cycle

one of the threads be killed or that a lock be forcibly stolen from one of the
threads. This killing and forcible stealing works well for transactions, but is
often problematic for kernel and application-level use of locking: Dealing
with the resulting partially updated structures can be extremely complex,
hazardous, and error-prone.

Therefore, kernels and applications should instead avoid deadlocks.
Deadlock-avoidance strategies include locking hierarchies (Section 7.1.1.1),
local locking hierarchies (Section 7.1.1.2), layered locking hierarchies (Sec-
tion 7.1.1.3), temporal locking hierarchies (Section 7.1.1.4), strategies for
dealing with APIs containing pointers to locks (Section 7.1.1.5), conditional
locking (Section 7.1.1.6), acquiring all needed locks first (Section 7.1.1.7),
single-lock-at-a-time designs (Section 7.1.1.8), and strategies for signal/in-
terrupt handlers (Section 7.1.1.9). Although there is no deadlock-avoidance
strategy that works perfectly for all situations, there is a good selection of
tools to choose from.

7.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring locks out of
order. In Figure 7.3, we might order the locks numerically, thus forbidding

234

a thread from acquiring a given lock if it already holds a lock with the
same or a higher number. Thread B has violated this hierarchy because
it is attempting to acquire Lock 3 while holding Lock 4. This violation
permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks and prohibit out-of-
order lock acquisition. For different types of locks, it is helpful to have a
carefully considered hierarchy from one type to the next. For many instances
of the same type of lock, for example, a per-node lock in a search tree, the
traditional approach is to carry out lock acquisition in order of the addresses
of the locks to be acquired. Either way, in large program, it is wise to use
tools such as the Linux-kernel Lockdep [Cor06a] to enforce your locking
hierarchy.

7.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies makes them difficult
to apply to library functions. After all, when a program using a given
library function has not yet been written, how can the poor library-function
implementor possibly follow the yet-to-be-defined locking hierarchy?

One special (but common) case is when the library function does not
invoke any of the caller’s code. In this case, the caller’s locks will never be
acquired while holding any of the library’s locks, so that there cannot be a
deadlock cycle containing locks from both the library and the caller.

Quick Quiz 7.3: Are there any exceptions to this rule, so that there really could
be a deadlock cycle containing locks from both the library and the caller, even
given that the library code never invokes any of the caller’s functions? H

But suppose that a library function does invoke the caller’s code. For
example, gsort () invokes a caller-provided comparison function. Now,
normally this comparison function will operate on unchanging local data, so
that it need not acquire locks, as shown in Figure 7.4. But maybe someone
is crazy enough to sort a collection whose keys are changing, thus requiring
that the comparison function acquire locks, which might result in deadlock,
as shown in Figure 7.5. How can the library function avoid this deadlock?

The golden rule in this case is “Release all locks before invoking unknown
code.” To follow this rule, the gsort () function must release all of its

235

Figure 7.4: No gsort () Compare-Function Locking

locks before invoking the comparison function. Thus gsort () will not be
holding any of its locks while the comparison function acquires any of the
caller’s locks, thus avoiding deadlock.

Quick Quiz 7.4: But if gsort () releases all its locks before invoking the
comparison function, how can it protect against races with other gsort () threads?

To see the benefits of local locking hierarchies, compare Figures 7.5
and 7.6. In both figures, application functions foo() and bar () invoke
gsort () while holding Locks A and B, respectively. Because this is a
parallel implementation of gsort (), it acquires Lock C. Function foo ()
passes function cmp () to gsort (), and cmp () acquires Lock B. Function
bar () passes a simple integer-comparison function (not shown) to gsort (),
and this simple function does not acquire any locks.

Now, if gsort () holds Lock C while calling cmp () in violation of the
golden release-all-locks rule above, as shown in Figure 7.5, deadlock can
occur. To see this, suppose that one thread invokes foo () while a second
thread concurrently invokes bar (). The first thread will acquire Lock A and
the second thread will acquire Lock B. If the first thread’s call to gsort ()

v2022.09.25a

236

Figure 7.5: Without gsort () Local Locking Hierarchy

Figure 7.6: Local Locking Hierarchy for gsort ()

v2022.09.2ba

237

acquires Lock C, then it will be unable to acquire Lock B when it calls
cmp (). But the first thread holds Lock C, so the second thread’s call to
gsort () will be unable to acquire it, and thus unable to release Lock B,
resulting in deadlock.

In contrast, if gsort () releases Lock C before invoking the comparison
function, which is unknown code from gsort () ’s perspective, then deadlock
is avoided as shown in Figure 7.6.

If each module releases all locks before invoking unknown code, then
deadlock is avoided if each module separately avoids deadlock. This
rule therefore greatly simplifies deadlock analysis and greatly improves
modularity.

7.1.1.3 Layered Locking Hierarchies

Unfortunately, it might not be possible for gsort () to release all of its locks
before invoking the comparison function. In this case, we cannot construct a
local locking hierarchy by releasing all locks before invoking unknown code.
However, we can instead construct a layered locking hierarchy, as shown in
Figure 7.7. Here, the cmp () function uses a new Lock D that is acquired
after all of Locks A, B, and C, avoiding deadlock. We therefore have three
layers to the global deadlock hierarchy, the first containing Locks A and B,
the second containing Lock C, and the third containing Lock D.

Please note that it is not typically possible to mechanically change cmp ()
to use the new Lock D. Quite the opposite: It is often necessary to make
profound design-level modifications. Nevertheless, the effort required for
such modifications is normally a small price to pay in order to avoid deadlock.
More to the point, this potential deadlock should preferably be detected at
design time, before any code has been generated!

For another example where releasing all locks before invoking unknown
code is impractical, imagine an iterator over a linked list, as shown in
Listing 7.1 (locked_list.c). The list_start() function acquires a
lock on the list and returns the first element (if there is one), and 1list_
next () either returns a pointer to the next element in the list or releases the
lock and returns NULL if the end of the list has been reached.

238

Figure 7.7: Layered Locking Hierarchy for gsort ()

v2022.09.2ba

Listing 7.1: Concurrent List Iterator

1

2
3
4
5
6
7
8
9

10
11
12
13

struct locked_list {

} .

spinlock_t s;
struct cds_list_head h;

H

struct cds_list_head *list_start(struct locked_list *1lp)

{

}

spin_lock(&lp->s);
return list_next(lp, &lp->h);

struct cds_list_head *list_next(struct locked_list *lp,
struct cds_list_head *np)

{

struct cds_list_head *ret;

ret = np->next;

if (ret == &lp->h) {
spin_unlock(&lp->s);
ret = NULL;

¥

return ret;

Listing 7.2: Concurrent List Iterator Usage

1
2
3
4
5
6
7
8
9

10
11

12

s

[}

v
{

truct list_ints {
struct cds_list_head n;
int a;

H
oid list_print(struct locked_list *1p)

struct cds_list_head *np;
struct list_ints *ip;

np = list_start(lp);

while (np !'= NULL) {
ip = cds_list_entry(np,
printf("\t%d\n", ip->a);
np = list_next(lp, np);

struct list_ints, n);

240

Listing 7.2 shows how this list iterator may be used. Lines 1-4 define
the 1ist_ints element containing a single integer, and lines 6—17 show
how to iterate over the list. Line 11 locks the list and fetches a pointer to
the first element, line 13 provides a pointer to our enclosing 1ist_ints
structure, line 14 prints the corresponding integer, and line 15 moves to the
next element. This is quite simple, and hides all of the locking.

That is, the locking remains hidden as long as the code processing each
list element does not itself acquire a lock that is held across some other call
to list_start() or list_next (), which results in deadlock. We can
avoid the deadlock by layering the locking hierarchy to take the list-iterator
locking into account.

This layered approach can be extended to an arbitrarily large number of
layers, but each added layer increases the complexity of the locking design.
Such increases in complexity are particularly inconvenient for some types
of object-oriented designs, in which control passes back and forth among a
large group of objects in an undisciplined manner." This mismatch between
the habits of object-oriented design and the need to avoid deadlock is an
important reason why parallel programming is perceived by some to be so
difficult.

Some alternatives to highly layered locking hierarchies are covered in
Chapter 9.

7.1.1.4 Temporal Locking Hierarchies

One way to avoid deadlock is to defer acquisition of one of the conflicting
locks. This approach is used in Linux-kernel RCU, whose call_rcu()
function is invoked by the Linux-kernel scheduler while holding its locks.
This means that call_rcu() cannot always safely invoke the scheduler to
do a wakeup, for example, in order to wake up an RCU kthread in order
to start the new grace period that is required by the callback queued by
call_rcu().

Quick Quiz 7.5: What do you mean “cannot always safely invoke the scheduler”?
Either call_rcu() can or cannot safely invoke the scheduler, right? Wl

! One name for this is “object-oriented spaghetti code.”

241

However, grace periods last for many milliseconds, so waiting another
millisecond before starting a new grace period is not normally a problem.
Therefore, if call_rcu() detects a possible deadlock with the scheduler, it
arranges to start the new grace period later, either within a timer handler or
within the scheduler-clock interrupt handler, depending on configuration.
Because no scheduler locks are held across either handler, deadlock is
successfully avoided.

The overall approach is thus to adhere to a locking hierarchy by deferring
lock acquisition to an environment in which no locks are held.

7.1.1.5 Locking Hierarchies and Pointers to Locks

Although there are some exceptions, an external API containing a pointer to
a lock is very often a misdesigned API. Handing an internal lock to some
other software component is after all the antithesis of information hiding,
which is in turn a key design principle.

Quick Quiz 7.6: Name one common situation where a pointer to a lock is passed
into a function. M

One exception is functions that hand off some entity, where the caller’s
lock must be held until the handoff is complete, but where the lock must
be released before the function returns. One example of such a function is
the POSIX pthread_cond_wait () function, where passing an pointer to
a pthread_mutex_t prevents hangs due to lost wakeups.

Quick Quiz 7.7: Doesn’t the fact that pthread_cond_wait () first releases the
mutex and then re-acquires it eliminate the possibility of deadlock? W

In short, if you find yourself exporting an API with a pointer to a lock
as an argument or as the return value, do yourself a favor and carefully
reconsider your API design. It might well be the right thing to do, but
experience indicates that this is unlikely.

7.1.1.6 Conditional Locking

But suppose that there is no reasonable locking hierarchy. This can happen
in real life, for example, in some types of layered network protocol stacks

242

Listing 7.3: Protocol Layering and Deadlock

spin_lock(&lock2);
layer_2_processing(pkt);
nextlayer = layer_1(pkt);
spin_lock(&nextlayer->lockl) ;
layer_1_processing(pkt);
spin_unlock(&lock2) ;
spin_unlock(&nextlayer->lockl);

R T R I S

where packets flow in both directions, for example, in implementations of
distributed lock managers. In the networking case, it might be necessary
to hold the locks from both layers when passing a packet from one layer
to another. Given that packets travel both up and down the protocol stack,
this is an excellent recipe for deadlock, as illustrated in Listing 7.3. Here, a
packet moving down the stack towards the wire must acquire the next layer’s
lock out of order. Given that packets moving up the stack away from the
wire are acquiring the locks in order, the lock acquisition in line 4 of the
listing can result in deadlock.

One way to avoid deadlocks in this case is to impose a locking hierarchy,
but when it is necessary to acquire a lock out of order, acquire it conditionally,
as shown in Listing 7.4. Instead of unconditionally acquiring the layer-1
lock, line 5 conditionally acquires the lock using the spin_trylock()
primitive. This primitive acquires the lock immediately if the lock is
available (returning non-zero), and otherwise returns zero without acquiring
the lock.

If spin_trylock() was successful, line 15 does the needed layer-1
processing. Otherwise, line 6 releases the lock, and lines 7 and 8 acquire
them in the correct order. Unfortunately, there might be multiple networking
devices on the system (e.g., Ethernet and WiFi), so that the layer_1()
function must make a routing decision. This decision might change at any
time, especially if the system is mobile.?> Therefore, line 9 must recheck the
decision, and if it has changed, must release the locks and start over.

Quick Quiz 7.8: Can the transformation from Listing 7.3 to Listing 7.4 be
applied universally? H

2 And, in contrast to the 1900s, mobility is the common case.

243

Listing 7.4: Avoiding Deadlock Via Conditional Locking

| retry:

2 spin_lock(&lock2);

3 layer_2_processing(pkt);

4 nextlayer = layer_1(pkt);

5 if (!spin_trylock(&nextlayer->lock1)) {
6 spin_unlock(&lock?2) ;

7 spin_lock(&nextlayer->lockl) ;

3 spin_lock(&lock2);

9 if (layer_1(pkt) != nextlayer) {
10 spin_unlock(&nextlayer->lockl);
11 spin_unlock(&lock2) ;

12 goto retry;

13 }

14 }

15 layer_1_processing(pkt);

16 spin_unlock(&lock2) ;

17 spin_unlock(&nextlayer->lockl);

Quick Quiz 7.9: But the complexity in Listing 7.4 is well worthwhile given that
it avoids deadlock, right? H

7.1.1.7 Acquire Needed Locks First

In an important special case of conditional locking, all needed locks are
acquired before any processing is carried out, where the needed locks might
be identified by hashing the addresses of the data structures involved. In this
case, processing need not be idempotent: If it turns out to be impossible to
acquire a given lock without first releasing one that was already acquired,
just release all the locks and try again. Only once all needed locks are held
will any processing be carried out.

However, this procedure can result in livelock, which will be discussed in
Section 7.1.2.

Quick Quiz 7.10: When using the “acquire needed locks first” approach described
in Section 7.1.1.7, how can livelock be avoided? W

A related approach, two-phase locking [BHGS87], has seen long production
use in transactional database systems. In the first phase of a two-phase
locking transaction, locks are acquired but not released. Once all needed
locks have been acquired, the transaction enters the second phase, where

244

locks are released, but not acquired. This locking approach allows databases
to provide serializability guarantees for their transactions, in other words, to
guarantee that all values seen and produced by the transactions are consistent
with some global ordering of all the transactions. Many such systems rely on
the ability to abort transactions, although this can be simplified by avoiding
making any changes to shared data until all needed locks are acquired.
Livelock and deadlock are issues in such systems, but practical solutions
may be found in any of a number of database textbooks.

7.1.1.8 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus avoiding deadlock.
For example, if a problem is perfectly partitionable, a single lock may be
assigned to each partition. Then a thread working on a given partition need
only acquire the one corresponding lock. Because no thread ever holds
more than one lock at a time, deadlock is impossible.

However, there must be some mechanism to ensure that the needed data
structures remain in existence during the time that neither lock is held. One
such mechanism is discussed in Section 7.4 and several others are presented
in Chapter 9.

7.1.1.9 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly dismissed by noting
that it is not legal to invoke pthread_mutex_lock() from within a signal
handler [Ope97]. However, it is possible (though often unwise) to hand-craft
locking primitives that can be invoked from signal handlers. Besides which,
almost all operating-system kernels permit locks to be acquired from within
interrupt handlers, which are analogous to signal handlers.

The trick is to block signals (or disable interrupts, as the case may be)
when acquiring any lock that might be acquired within a signal (or an
interrupt) handler. Furthermore, if holding such a lock, it is illegal to
attempt to acquire any lock that is ever acquired outside of a signal handler
without blocking signals.

245

Quick Quiz 7.11: Suppose Lock A is never acquired within a signal handler,
but Lock B is acquired both from thread context and by signal handlers. Suppose
further that Lock A is sometimes acquired with signals unblocked. Why is it
illegal to acquire Lock A holding Lock B? H

If a lock is acquired by the handlers for several signals, then each and
every one of these signals must be blocked whenever that lock is acquired,
even when that lock is acquired within a signal handler.

[Quick Quiz 7.12: How can you legally block signals within a signal handler? .]

Unfortunately, blocking and unblocking signals can be expensive in
some operating systems, notably including Linux, so performance concerns
often mean that locks acquired in signal handlers are only acquired in
signal handlers, and that lockless synchronization mechanisms are used to
communicate between application code and signal handlers.

Or that signal handlers are avoided completely except for handling fatal
errors.

Quick Quiz 7.13: If acquiring locks in signal handlers is such a bad idea, why
even discuss ways of making it safe? H

7.1.1.10 Discussion

There are a large number of deadlock-avoidance strategies available to the
shared-memory parallel programmer, but there are sequential programs for
which none of them is a good fit. This is one of the reasons that expert
programmers have more than one tool in their toolbox: Locking is a powerful
concurrency tool, but there are jobs better addressed with other tools.

Quick Quiz 7.14: Given an object-oriented application that passes control freely
among a group of objects such that there is no straightforward locking hierarchy,”
layered or otherwise, how can this application be parallelized? W

¢ Also known as “object-oriented spaghetti code.”

Nevertheless, the strategies described in this section have proven quite
useful in many settings.

246

Listing 7.5: Abusing Conditional Locking

| void threadil(void)

2 {

3 retry:

4 spin_lock(&lockl);

5 do_one_thing() ;

6 if (!spin_trylock(&lock2)) {
7 spin_unlock(&lockl) ;
8 goto retry;

9 Y

10 do_another_thing();

1 spin_unlock(&lock2) ;

12 spin_unlock(&lockl) ;

13}

14

15 void thread2(void)

16 {

17 retry:

18 spin_lock(&lock2);

19 do_a_third_thing();

20 if (!'spin_trylock(&lock1)) {
21 spin_unlock(&lock?2) ;
2 goto retry;

23 ¥

24 do_a_fourth_thing();

25 spin_unlock(&lockl);

26 spin_unlock(&lock2) ;

27 }

7.1.2 Livelock and Starvation

Although conditional locking can be an effective deadlock-avoidance mech-
anism, it can be abused. Consider for example the beautifully symmetric
example shown in Listing 7.5. This example’s beauty hides an ugly livelock.
To see this, consider the following sequence of events:

1. Thread 1 acquires lockl on line 4, then invokes do_one_thing().

2. Thread 2 acquires lock2 on line 18, then invokes do_a_third_
thing ().

3. Thread 1 attempts to acquire 1ock2 on line 6, but fails because Thread 2
holds it.

4. Thread 2 attempts to acquire lockl on line 20, but fails because
Thread 1 holds it.

247

5. Thread 1 releases 1ockl on line 7, then jumps to retry at line 3.
6. Thread 2 releases Lock2 on line 21, and jumps to retry at line 17.

7. The livelock dance repeats from the beginning.

[Quick Quiz 7.15: How can the livelock shown in Listing 7.5 be avoided? W]

Livelock can be thought of as an extreme form of starvation where a
group of threads starves, rather than just one of them.?

Livelock and starvation are serious issues in software transactional
memory implementations, and so the concept of contention manager has
been introduced to encapsulate these issues. In the case of locking, simple
exponential backoff can often address livelock and starvation. The idea is
to introduce exponentially increasing delays before each retry, as shown in
Listing 7.6.

[Quick Quiz 7.16: What problems can you spot in the code in Listing 7.6? H]

For better results, backoffs should be bounded, and even better high-
contention results are obtained via queued locking [And90], which is
discussed more in Section 7.3.2. Of course, best of all is to use a good parallel
design that avoids these problems by maintaining low lock contention.

7.1.3 Unfairness

Unfairness can be thought of as a less-severe form of starvation, where a
subset of threads contending for a given lock are granted the lion’s share of
the acquisitions. This can happen on machines with shared caches or NUMA
characteristics, for example, as shown in Figure 7.8. If CPU O releases
a lock that all the other CPUs are attempting to acquire, the interconnect
shared between CPUs 0 and 1 means that CPU 1 will have an advantage
over CPUs 2-7. Therefore CPU 1 will likely acquire the lock. If CPU 1
holds the lock long enough for CPU 0 to be requesting the lock by the time

3 Try not to get too hung up on the exact definitions of terms like livelock, starvation, and
unfairness. Anything that causes a group of threads to fail to make adequate forward progress
is a bug that needs to be fixed, and debating names doesn’t fix bugs.

248

Listing 7.6: Conditional Locking and Exponential Backoff

1
2
3
4
5

18

v
{

retry:

}

o0id threadil(void)

unsigned int wait = 1;

spin_lock(&lock1) ;

do_one_thing() ;

if (!spin_trylock(&lock2)) {
spin_unlock(&lockl) ;
sleep(wait);
wait = wait << 1;
goto retry;

}

do_another_thing();

spin_unlock(&lock2) ;

spin_unlock(&lockl) ;

void thread2(void)

{

retry:

unsigned int wait = 1;

spin_lock(&lock2) ;

do_a_third_thing();

if (!spin_trylock(&lock1)) {
spin_unlock(&lock?2) ;
sleep(wait);
wait = wait << 1;
goto retry;

T

do_a_fourth_thing();

spin_unlock(&lockl);

spin_unlock(&lock2) ;

249

CPUO CPU 1 CPU 2 CPU3
Cache Cache Cache Cache

Interconnect Interconnect
~ =

Memory @’ System Interconnect @ Memory

Z= X
Interconnect Interconnect
Cache Cache Cache Cache
CPU 4 CPU5 CPU6 CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8 GHz Clock Period (8 cm)

Figure 7.8: System Architecture and Lock Unfairness

CPU 1 releases it and vice versa, the lock can shuttle between CPUs 0 and 1,
bypassing CPUs 2—-7.

Quick Quiz 7.17: Wouldn’t it be better just to use a good parallel design so that
lock contention was low enough to avoid unfairness? WM

7.1.4 Inefficiency

Locks are implemented using atomic instructions and memory barriers, and
often involve cache misses. As we saw in Chapter 3, these instructions are
quite expensive, roughly two orders of magnitude greater overhead than
simple instructions. This can be a serious problem for locking: If you
protect a single instruction with a lock, you will increase the overhead by
a factor of one hundred. Even assuming perfect scalability, one hundred
CPUs would be required to keep up with a single CPU executing the same
code without locking.

Blade--. Conlacting Area

/7

Figure 7.9: Saw Kerf

This situation is not confined to locking. Figure 7.9 shows how this
same principle applies to the age-old activity of sawing wood. As can
be seen in the figure, sawing a board converts a small piece of that board
(the width of the saw blade) into sawdust. Of course, locks partition time
instead of sawing wood,* but just like sawing wood, using locks to partition
time wastes some of that time due to lock overhead and (worse yet) lock
contention. One important difference is that if someone saws a board into
too-small pieces, the resulting conversion of most of that board into sawdust
will be immediately obvious. In contrast, it is not always obvious that a
given lock acquisition is wasting excessive amounts of time.

And this situation underscores the importance of the synchronization-
granularity tradeoff discussed in Section 6.3, especially Figure 6.16: Too
coarse a granularity will limit scalability, while too fine a granularity will
result in excessive synchronization overhead.

Acquiring a lock might be expensive, but once held, the CPU’s caches
are an effective performance booster, at least for large critical sections. In
addition, once a lock is held, the data protected by that lock can be accessed
by the lock holder without interference from other threads.

[Quick Quiz 7.18: How might the lock holder be interfered with? Wl]

The Rust programming language takes lock/data association a step further
by allowing the developer to make a compiler-visible association between

4 That is, locking is temporal synchronization. Mechanisms that synchronize both
temporally and spatially are described in Chapter 9.

251

a lock and the data that it protects [JJKD21]. When such an association
has been made, attempts to access the data without the benefit of the
corresponding lock will result in a compile-time diagnostic. The hope is
that this will greatly reduce the frequency of this class of bugs. Of course,
this approach does not apply straightforwardly to cases where the data to be
locked is distributed throughout the nodes of some data structure or when
that which is locked is purely abstract, for example, when a small subset of
state-machine transitions is to be protected by a given lock. For this reason,
Rust allows locks to be associated with types rather than data items or even
to be associated with nothing at all. This last option permits Rust to emulate
traditional locking use cases, but is not popular among Rust developers.
Perhaps the Rust community will come up with other mechanisms tailored
to other locking use cases.

7.2 Types of Locks

Only locks in life are what you think you know, but
don’t. Accept your ignorance and try something new.

Dennis Vickers

There are a surprising number of types of locks, more than this short
chapter can possibly do justice to. The following sections discuss exclusive
locks (Section 7.2.1), reader-writer locks (Section 7.2.2), multi-role locks
(Section 7.2.3), and scoped locking (Section 7.2.4).

7.2.1 Exclusive Locks

Exclusive locks are what they say they are: Only one thread may hold the
lock at a time. The holder of such a lock thus has exclusive access to all
data protected by that lock, hence the name.

Of course, this all assumes that this lock is held across all accesses to
data purportedly protected by the lock. Although there are some tools
that can help (see for example Section 12.3.1), the ultimate responsibility

252

for ensuring that the lock is always acquired when needed rests with the
developer.

Quick Quiz 7.19: Does it ever make sense to have an exclusive lock acquisition
immediately followed by a release of that same lock, that is, an empty critical
section? M

It is important to note that unconditionally acquiring an exclusive lock
has two effects: (1) Waiting for all prior holders of that lock to release it and
(2) Blocking any other acquisition attempts until the lock is released. As a
result, at lock acquisition time, any concurrent acquisitions of that lock must
be partitioned into prior holders and subsequent holders. Different types of
exclusive locks use different partitioning strategies [Brall, GGL*19], for
example:

1. Strict FIFO, with acquisitions starting earlier acquiring the lock earlier.

2. Approximate FIFO, with acquisitions starting sufficiently earlier ac-
quiring the lock earlier.

3. FIFO within priority level, with higher-priority threads acquiring the
lock earlier than any lower-priority threads attempting to acquire the
lock at about the same time, but so that some FIFO ordering applies
for threads of the same priority.

4. Random, so that the new lock holder is chosen randomly from all
threads attempting acquisition, regardless of timing.

5. Unfair, so that a given acquisition might never acquire the lock (see
Section 7.1.3).

Unfortunately, locking implementations with stronger guarantees typically
incur higher overhead, motivating the wide variety of locking implementa-
tions in production use. For example, real-time systems often require some
degree of FIFO ordering within priority level, and much else besides (see
Section 14.3.5.1), while non-realtime systems subject to high contention
might require only enough ordering to avoid starvation, and finally, non-
realtime systems designed to avoid contention might not need fairness at
all.

&)
[

7.2.2 Reader-Writer Locks

Reader-writer locks [CHP71] permit any number of readers to hold the lock
concurrently on the one hand or a single writer to hold the lock on the other.
In theory, then, reader-writer locks should allow excellent scalability for
data that is read often and written rarely. In practice, the scalability will
depend on the reader-writer lock implementation.

The classic reader-writer lock implementation involves a set of counters
and flags that are manipulated atomically. This type of implementation
suffers from the same problem as does exclusive locking for short critical
sections: The overhead of acquiring and releasing the lock is about two
orders of magnitude greater than the overhead of a simple instruction. Of
course, if the critical section is long enough, the overhead of acquiring and
releasing the lock becomes negligible. However, because only one thread
at a time can be manipulating the lock, the required critical-section size
increases with the number of CPUs.

It is possible to design a reader-writer lock that is much more favorable
to readers through use of per-thread exclusive locks [HW92]. To read, a
thread acquires only its own lock. To write, a thread acquires all locks.
In the absence of writers, each reader incurs only atomic-instruction and
memory-barrier overhead, with no cache misses, which is quite good for
a locking primitive. Unfortunately, writers must incur cache misses as
well as atomic-instruction and memory-barrier overhead—multiplied by the
number of threads.

In short, reader-writer locks can be quite useful in a number of situations,
but each type of implementation does have its drawbacks. The canonical use
case for reader-writer locking involves very long read-side critical sections,
preferably measured in hundreds of microseconds or even milliseconds.

As with exclusive locks, a reader-writer lock acquisition cannot complete
until all prior conflicting holders of that lock have released it. If a lock
is read-held, then read acquisitions can complete immediately, but write
acquisitions must wait until there are no longer any readers holding the
lock. If a lock is write-held, then all acquisitions must wait until the writer
releases the lock. Again as with exclusive locks, different reader-writer lock
implementations provide different degrees of FIFO ordering to readers on
the one hand and to writers on the other.

254

But suppose a large number of readers hold the lock and a writer is
waiting to acquire the lock. Should readers be allowed to continue to acquire
the lock, possibly starving the writer? Similarly, suppose that a writer holds
the lock and that a large number of both readers and writers are waiting to
acquire the lock. When the current writer release the lock, should it be given
to a reader or to another writer? If it is given to a reader, how many readers
should be allowed to acquire the lock before the next writer is permitted to
do so?

There are many possible answers to these questions, with different levels
of complexity, overhead, and fairness. Different implementations might
have different costs, for example, some types of reader-writer locks incur
extremely large latencies when switching from read-holder to write-holder
mode. Here are a few possible approaches:

1. Reader-preference implementations unconditionally favor readers over
writers, possibly allowing write acquisitions to be indefinitely blocked.

2. Batch-fair implementations ensure that when both readers and writers
are acquiring the lock, both have reasonable access via batching. For
example, the lock might admit five readers per CPU, then two writers,
then five more readers per CPU, and so on.

3. Writer-preference implementations unconditionally favor writers over
readers, possibly allowing read acquisitions to be indefinitely blocked.

Of course, these distinctions matter only under conditions of high lock
contention.

Please keep the waiting/blocking dual nature of locks firmly in mind.
This will be revisited in Chapter 9’s discussion of scalable high-performance
special-purpose alternatives to locking.

7.2.3 Beyond Reader-Writer Locks

Reader-writer locks and exclusive locks differ in their admission policy:
Exclusive locks allow at most one holder, while reader-writer locks permit
an arbitrary number of read-holders (but only one write-holder). There is a
very large number of possible admission policies, one of which is that of

Table 7.1: VAX/VMS Distributed Lock Manager Policy

g &

= § E =9 &

s & 2 § E

T =2 2 K =

5 8 8 3 3 &

Z 5 5 35 8 %

= 2 2 2 £ 35

=

Z C 0 & & &
Null (Not Held)
Concurrent Read X
Concurrent Write X X X
Protected Read X X X
Protected Write X X X X
Exclusive X X X X X

the VAX/VMS distributed lock manager (DLM) [ST87], which is shown in
Table 7.1. Blank cells indicate compatible modes, while cells containing
“X” indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes of comparison,
exclusive locks use two modes (not held and held), while reader-writer locks
use three modes (not held, read held, and write held).

The first mode is null, or not held. This mode is compatible with all other
modes, which is to be expected: If a thread is not holding a lock, it should
not prevent any other thread from acquiring that lock.

The second mode is concurrent read, which is compatible with every
other mode except for exclusive. The concurrent-read mode might be used
to accumulate approximate statistics on a data structure, while permitting
updates to proceed concurrently.

The third mode is concurrent write, which is compatible with null,
concurrent read, and concurrent write. The concurrent-write mode might
be used to update approximate statistics, while still permitting reads and
concurrent updates to proceed concurrently.

The fourth mode is protected read, which is compatible with null, concur-
rent read, and protected read. The protected-read mode might be used to

256

obtain a consistent snapshot of the data structure, while permitting reads
but not updates to proceed concurrently.

The fifth mode is protected write, which is compatible with null and
concurrent read. The protected-write mode might be used to carry out
updates to a data structure that could interfere with protected readers but
which could be tolerated by concurrent readers.

The sixth and final mode is exclusive, which is compatible only with
null. The exclusive mode is used when it is necessary to exclude all other
accesses.

It is interesting to note that exclusive locks and reader-writer locks can
be emulated by the VAX/VMS DLM. Exclusive locks would use only the
null and exclusive modes, while reader-writer locks might use the null,
protected-read, and protected-write modes.

Quick Quiz 7.20: Is there any other way for the VAX/VMS DLM to emulate a
reader-writer lock? H

Although the VAX/VMS DLM policy has seen widespread production
use for distributed databases, it does not appear to be used much in shared-
memory applications. One possible reason for this is that the greater
communication overheads of distributed databases can hide the greater
overhead of the VAX/VMS DLM’s more-complex admission policy.

Nevertheless, the VAX/VMS DLM is an interesting illustration of just
how flexible the concepts behind locking can be. It also serves as a very
simple introduction to the locking schemes used by modern DBMSes, which
can have more than thirty locking modes, compared to VAX/VMS’s six.

7.2.4 Scoped Locking

The locking primitives discussed thus far require explicit acquisition and
release primitives, for example, spin_lock() and spin_unlock (), respec-
tively. Another approach is to use the object-oriented resource-acquisition-
is-initialization (RAII) pattern [ES90].> This pattern is often applied to auto
variables in languages like C++, where the corresponding constructor is

3 Though more clearly expressed at https : //www.stroustrup.com/bs_faq2.html#
finally.

https://www.stroustrup.com/bs_faq2.html#finally
https://www.stroustrup.com/bs_faq2.html#finally

257

invoked upon entry to the object’s scope, and the corresponding destructor
is invoked upon exit from that scope. This can be applied to locking by
having the constructor acquire the lock and the destructor free it.

This approach can be quite useful, in fact in 1990 I was convinced that
it was the only type of locking that was needed.® One very nice property
of RAII locking is that you don’t need to carefully release the lock on each
and every code path that exits that scope, a property that can eliminate a
troublesome set of bugs.

However, RAII locking also has a dark side. RAII makes it quite difficult
to encapsulate lock acquisition and release, for example, in iterators. In
many iterator implementations, you would like to acquire the lock in the
iterator’s “start” function and release it in the iterator’s “stop” function.
RAII locking instead requires that the lock acquisition and release take place
in the same level of scoping, making such encapsulation difficult or even
impossible.

Strict RAII locking also prohibits overlapping critical sections, due to the
fact that scopes must nest. This prohibition makes it difficult or impossible
to express a number of useful constructs, for example, locking trees that
mediate between multiple concurrent attempts to assert an event. Of an
arbitrarily large group of concurrent attempts, only one need succeed, and
the best strategy for the remaining attempts is for them to fail as quickly and
painlessly as possible. Otherwise, lock contention becomes pathological
on large systems (where “large” is many hundreds of CPUs). Therefore,
C++17 [Smil9] has escapes from strict RAII in its unique_lock class,
which allows the scope of the critical section to be controlled to roughly the
same extent as can be achieved with explicit lock acquisition and release
primitives.

Example strict-RAlIl-unfriendly data structures from Linux-kernel RCU
are shown in Figure 7.10. Here, each CPU is assigned a leaf rcu_node
structure, and each rcu_node structure has a pointer to its parent (named,
oddly enough, —->parent), up to the root rcu_node structure, which has
a NULL ->parent pointer. The number of child rcu_node structures per

6 My later work with parallelism at Sequent Computer Systems very quickly disabused
me of this misguided notion.

Root rcu_node

Structure
Leaf rcu_node o 0o o Leaf rcu_node
Structure 0 Structure N
T To e o T T To e o T
o I - - —
D D S .+ |
oo —
S o 5 z - z
5 c
E <= =)
o o
o £ (©]
o 5
o
o

Figure 7.10: Locking Hierarchy

parent can vary, but is typically 32 or 64. Each rcu_node structure also
contains a lock named ->fqslock.

The general approach is a fournament, where a given CPU conditionally
acquires its leaf rcu_node structure’s ->fgslock, and, if successful,
attempt to acquire that of the parent, then release that of the child. In
addition, at each level, the CPU checks a global gp_flags variable, and
if this variable indicates that some other CPU has asserted the event, the
first CPU drops out of the competition. This acquire-then-release sequence
continues until either the gp_flags variable indicates that someone else
won the tournament, one of the attempts to acquire an ->fgslock fails,
or the root rcu_node structure’s ->fqgslock has been acquired. If the
root rcu_node structure’s —>fqgslock is acquired, a function named do_
force_quiescent_state() is invoked.

Listing 7.7: Conditional Locking to Reduce Contention

I void force_quiescent_state(struct rcu_node *rnp_leaf)

2 {

3 int ret;

4 struct rcu_node *rnp = rnp_leaf;

5 struct rcu_node *rnp_old = NULL;

6

7 for (; rnp != NULL; rnp = rnp->parent) {
8 ret = (READ_ONCE(gp_flags)) ||

9 'raw_spin_trylock(&rnp->fgslock) ;
10 if (rnp_old '= NULL)

11 raw_spin_unlock(&rnp_old->fgslock) ;
12 if (ret)

13 return;

14 rnp_old = rnp;

15 }

16 if (!'READ_ONCE(gp_flags)) {

17 WRITE_ONCE(gp_flags, 1);

18 do_force_quiescent_state();

19 WRITE_ONCE(gp_flags, 0);

20 ¥

21 raw_spin_unlock(&rnp_old->fqslock) ;

2 }

Simplified code to implement this is shown in Listing 7.7. The purpose
of this function is to mediate between CPUs who have concurrently detected
a need to invoke the do_force_quiescent_state() function. At any
given time, it only makes sense for one instance of do_force_quiescent_
state () to be active, so if there are multiple concurrent callers, we need at
most one of them to actually invoke do_force_quiescent_state(), and
we need the rest to (as quickly and painlessly as possible) give up and leave.

To this end, each pass through the loop spanning lines 715 attempts to
advance up one level in the rcu_node hierarchy. If the gp_flags variable
is already set (line 8) or if the attempt to acquire the current rcu_node
structure’s ->fqgslock is unsuccessful (line 9), then local variable ret is
set to 1. If line 10 sees that local variable rnp_o1ld is non-NULL, meaning
that we hold rnp_old’s ->fqs_lock, line 11 releases this lock (but only
after the attempt has been made to acquire the parent rcu_node structure’s
->fgslock). If line 12 sees that either line 8 or 9 saw a reason to give
up, line 13 returns to the caller. Otherwise, we must have acquired the
current rcu_node structure’s —>fgslock, so line 14 saves a pointer to this

260

structure in local variable rnp_old in preparation for the next pass through
the loop.

If control reaches line 16, we won the tournament, and now holds
the root rcu_node structure’s ->fqslock. If line 16 still sees that the
global variable gp_flags is zero, line 17 sets gp_flags to one, line 18
invokes do_force_quiescent_state(), and line 19 resets gp_flags
back to zero. Either way, line 21 releases the root rcu_node structure’s
->fgslock.

Quick Quiz 7.21: The code in Listing 7.7 is ridiculously complicated! Why not
conditionally acquire a single global lock?

Quick Quiz 7.22: Wait a minute! If we “win” the tournament on line 16
of Listing 7.7, we get to do all the work of do_force_quiescent_state().
Exactly how is that a win, really? H

This function illustrates the not-uncommon pattern of hierarchical locking.
This pattern is difficult to implement using strict RAII locking,” just like the
iterator encapsulation noted earlier, and so explicit lock/unlock primitives
(or C++17-style unique_lock escapes) will be required for the foreseeable
future.

7.3 Locking Implementation Issues

When you translate a dream into reality, it’s never a
full implementation. It is easier to dream than to do.

Shai Agassi

Developers are almost always best-served by using whatever locking primi-
tives are provided by the system, for example, the POSIX pthread mutex
locks [Ope97, But97]. Nevertheless, studying sample implementations can

7 Which is why many RAII locking implementations provide a way to leak the lock out
of the scope that it was acquired and into the scope in which it is to be released. However,
some object must mediate the scope leaking, which can add complexity compared to non-RAII
explicit locking primitives.

261

Listing 7.8: Sample Lock Based on Atomic Exchange
1 typedef int xchglock_t;

2 #define DEFINE_XCHG_LOCK(n) xchglock_t n = 0

3

4 void xchg_lock(xchglock_t *xp)

s {

6 while (xchg(xp, 1) == 1) {
7 while (READ_ONCE(*xp) == 1)
8 continue;
9 ¥

10 ¥

11

12 void xchg_unlock(xchglock_t *xp)
13 {

14 (void)xchg(xp, 0);

15 ¥

be helpful, as can considering the challenges posed by extreme workloads
and environments.

7.3.1 Sample Exclusive-Locking Implementation Based
on Atomic Exchange

This section reviews the implementation shown in Listing 7.8. The data
structure for this lock is just an int, as shown on line 1, but could be any
integral type. The initial value of this lock is zero, meaning “unlocked”, as
shown on line 2.

Quick Quiz 7.23: Why not rely on the C language’s default initialization of zero
instead of using the explicit initializer shown on line 2 of Listing 7.8? W

Lock acquisition is carried out by the xchg_lock() function shown on
lines 4-10. This function uses a nested loop, with the outer loop repeatedly
atomically exchanging the value of the lock with the value one (meaning
“locked”). If the old value was already the value one (in other words,
someone else already holds the lock), then the inner loop (lines 7-8) spins
until the lock is available, at which point the outer loop makes another
attempt to acquire the lock.

Quick Quiz 7.24: Why bother with the inner loop on lines 7-8 of Listing 7.8?
Why not simply repeatedly do the atomic exchange operation on line 6? Wl

262

Lock release is carried out by the xchg_unlock() function shown on
lines 12—15. Line 14 atomically exchanges the value zero (“unlocked”) into
the lock, thus marking it as having been released.

Quick Quiz 7.25: Why not simply store zero into the lock word on line 14 of
Listing 7.87 W

This lock is a simple example of a test-and-set lock [SR84], but very similar
mechanisms have been used extensively as pure spinlocks in production.

7.3.2 Other Exclusive-Locking Implementations

There are a great many other possible implementations of locking based
on atomic instructions, many of which are reviewed in the classic paper by
Mellor-Crummey and Scott [MCS91]. These implementations represent
different points in a multi-dimensional design tradeoff [GGL*19, Guil8,
McK96b]. For example, the atomic-exchange-based test-and-set lock
presented in the previous section works well when contention is low and
has the advantage of small memory footprint. It avoids giving the lock to
threads that cannot use it, but as a result can suffer from unfairness or even
starvation at high contention levels.

In contrast, ticket lock [MCS91], which was once used in the Linux kernel,
avoids unfairness at high contention levels. However, as a consequence of
its strict FIFO discipline, it can grant the lock to a thread that is currently
unable to use it, perhaps due to that thread being preempted or interrupted.
On the other hand, it is important to avoid getting too worried about the
possibility of preemption and interruption. After all, in many cases, this
preemption and interruption could just as well happen just after the lock
was acquired.®

All locking implementations where waiters spin on a single memory
location, including both test-and-set locks and ticket locks, suffer from
performance problems at high contention levels. The problem is that the

8 Besides, the best way of handling high lock contention is to avoid it in the first place!
There are nevertheless some situations where high lock contention is the lesser of the available
evils, and in any case, studying schemes that deal with high levels of contention is a good
mental exercise.

263

thread releasing the lock must update the value of the corresponding memory
location. At low contention, this is not a problem: The corresponding cache
line is very likely still local to and writeable by the thread holding the lock.
In contrast, at high levels of contention, each thread attempting to acquire
the lock will have a read-only copy of the cache line, and the lock holder
will need to invalidate all such copies before it can carry out the update
that releases the lock. In general, the more CPUs and threads there are, the
greater the overhead incurred when releasing the lock under conditions of
high contention.

This negative scalability has motivated a number of different queued-lock
implementations [And90, GT90, MCS91, WKS94, Cra93, MLH94, TS93],
some of which are used in recent versions of the Linux kernel [Corl14b].
Queued locks avoid high cache-invalidation overhead by assigning each
thread a queue element. These queue elements are linked together into a
queue that governs the order that the lock will be granted to the waiting
threads. The key point is that each thread spins on its own queue element,
so that the lock holder need only invalidate the first element from the next
thread’s CPU’s cache. This arrangement greatly reduces the overhead of
lock handoff at high levels of contention.

More recent queued-lock implementations also take the system’s architec-
ture into account, preferentially granting locks locally, while also taking steps
to avoid starvation [SSVMO02, RHO3, RH02, JMRR02, MCMO02]. Many of
these can be thought of as analogous to the elevator algorithms traditionally
used in scheduling disk I/O.

Unfortunately, the same scheduling logic that improves the efficiency
of queued locks at high contention also increases their overhead at low
contention. Beng-Hong Lim and Anant Agarwal therefore combined a
simple test-and-set lock with a queued lock, using the test-and-set lock at
low levels of contention and switching to the queued lock at high levels of
contention [LLA94], thus getting low overhead at low levels of contention and
getting fairness and high throughput at high levels of contention. Browning
et al. took a similar approach, but avoided the use of a separate flag, so that
the test-and-set fast path uses the same sequence of instructions that would
be used in a simple test-and-set lock [BMMMOS5]. This approach has been
used in production.

264

Another issue that arises at high levels of contention is when the lock
holder is delayed, especially when the delay is due to preemption, which can
result in priority inversion, where a low-priority thread holds a lock, but is
preempted by a medium priority CPU-bound thread, which results in a high-
priority process blocking while attempting to acquire the lock. The result is
that the CPU-bound medium-priority process is preventing the high-priority
process from running. One solution is priority inheritance [LR80], which
has been widely used for real-time computing [SRL90, Cor06b], despite
some lingering controversy over this practice [Yod04a, Loc02].

Another way to avoid priority inversion is to prevent preemption while
a lock is held. Because preventing preemption while locks are held also
improves throughput, most proprietary UNIX kernels offer some form of
scheduler-conscious synchronization mechanism [KWS97], largely due to
the efforts of a certain sizable database vendor. These mechanisms usually
take the form of a hint that preemption should be avoided in a given region of
code, with this hint typically being placed in a machine register. These hints
frequently take the form of a bit set in a particular machine register, which
enables extremely low per-lock-acquisition overhead for these mechanisms.
In contrast, Linux avoids these hints, instead getting similar results from a
mechanism called futexes [FRK02, Mol06, Ros06, Drel1].

Interestingly enough, atomic instructions are not strictly needed to im-
plement locks [Dij65, Lam74]. An excellent exposition of the issues
surrounding locking implementations based on simple loads and stores may
be found in Herlihy’s and Shavit’s textbook [HS08, HSLS20]. The main
point echoed here is that such implementations currently have little practical
application, although a careful study of them can be both entertaining and
enlightening. Nevertheless, with one exception described below, such study
is left as an exercise for the reader.

Gamsa et al. [GKAS99, Section 5.3] describe a token-based mechanism
in which a token circulates among the CPUs. When the token reaches a
given CPU, it has exclusive access to anything protected by that token. There
are any number of schemes that may be used to implement the token-based
mechanism, for example:

1. Maintain a per-CPU flag, which is initially zero for all but one CPU.
When a CPU’s flag is non-zero, it holds the token. When it finishes

265

with the token, it zeroes its flag and sets the flag of the next CPU to
one (or to any other non-zero value).

2. Maintain a per-CPU counter, which is initially set to the corresponding
CPU’s number, which we assume to range from zero to N — 1, where
N is the number of CPUs in the system. When a CPU’s counter is
greater than that of the next CPU (taking counter wrap into account),
the first CPU holds the token. When it is finished with the token, it sets
the next CPU’s counter to a value one greater than its own counter.

Quick Quiz 7.26: How can you tell if one counter is greater than another, while
accounting for counter wrap?

[Quick Quiz 7.27: Which is better, the counter approach or the flag approach? .]

This lock is unusual in that a given CPU cannot necessarily acquire it
immediately, even if no other CPU is using it at the moment. Instead, the
CPU must wait until the token comes around to it. This is useful in cases
where CPUs need periodic access to the critical section, but can tolerate
variances in token-circulation rate. Gamsa et al. [GKAS99] used it to
implement a variant of read-copy update (see Section 9.5), but it could also
be used to protect periodic per-CPU operations such as flushing per-CPU
caches used by memory allocators [MS93], garbage-collecting per-CPU
data structures, or flushing per-CPU data to shared storage (or to mass
storage, for that matter).

The Linux kernel now uses queued spinlocks [Corl4b], but because
of the complexity of implementations that provide good performance
across the range of contention levels, the path has not always been
smooth [Marl8, Deal8]. As increasing numbers of people gain famil-
iarity with parallel hardware and parallelize increasing amounts of code,
we can continue to expect more special-purpose locking primitives to ap-
pear, see for example Guerraoui et al. [GGL*19, Guil8]. Nevertheless,
you should carefully consider this important safety tip: Use the standard
synchronization primitives whenever humanly possible. The big advantage

266

of the standard synchronization primitives over roll-your-own efforts is that

the standard primitives are typically much less bug-prone.

9

7.4 Lock-Based Existence Guarantees

Existence precedes and rules essence.

Jean-Paul Sartre

A key challenge in parallel programming is to provide existence guaran-
tees [GKAS99], so that attempts to access a given object can rely on that
object being in existence throughout a given access attempt.

In some cases, existence guarantees are implicit:

1.

Global variables and static local variables in the base module will exist
as long as the application is running.

Global variables and static local variables in a loaded module will exist
as long as that module remains loaded.

. A module will remain loaded as long as at least one of its functions

has an active instance.

A given function instance’s on-stack variables will exist until that
instance returns.

If you are executing within a given function or have been called (directly
or indirectly) from that function, then the given function has an active
instance.

These implicit existence guarantees are straightforward, though bugs
involving implicit existence guarantees really can happen.

9 And yes, I have done at least my share of roll-your-own synchronization primitives.

However, you will notice that my hair is much greyer than it was before I started doing that
sort of work. Coincidence? Maybe. But are you really willing to risk your own hair turning
prematurely grey?

267

Listing 7.9: Per-Element Locking Without Existence Guarantees

I int delete(int key)

2 {

3 int b;

4 struct element *p;

5

6 b = hashfunction(key);
7 p = hashtable[b];

8 if (p == NULL || p->key != key)
9 return O;

10 spin_lock(&p->lock);

1 hashtable[b] = NULL;
12 spin_unlock(&p->lock) ;
13 kfree(p);

14 return 1;

15}

Quick Quiz 7.28: How can relying on implicit existence guarantees result in a
bug? M

But the more interesting—and troublesome—guarantee involves heap
memory: A dynamically allocated data structure will exist until it is freed.
The problem to be solved is to synchronize the freeing of the structure with
concurrent accesses to that same structure. One way to do this is with
explicit guarantees, such as locking. If a given structure may only be freed
while holding a given lock, then holding that lock guarantees that structure’s
existence.

But this guarantee depends on the existence of the lock itself. One
straightforward way to guarantee the lock’s existence is to place the lock
in a global variable, but global locking has the disadvantage of limiting
scalability. One way of providing scalability that improves as the size of the
data structure increases is to place a lock in each element of the structure.
Unfortunately, putting the lock that is to protect a data element in the data
element itself is subject to subtle race conditions, as shown in Listing 7.9.

Quick Quiz 7.29: What if the element we need to delete is not the first element
of the list on line 8 of Listing 7.97 WM

To see one of these race conditions, consider the following sequence of
events:

268

Listing 7.10: Per-Element Locking With Lock-Based Existence Guarantees

nt delete(int key)

1
2
3
4
5
6
7
8

9
10
11
12

13
14
15
16
17

18
19

i
{

int b;
struct element *p;
spinlock_t *sp;

b = hashfunction(key) ;

sp = &locktable[b];

spin_lock(sp);

p = hashtable[b];

if (p == NULL || p->key != key) {
spin_unlock(sp);
return 0;

}

hashtable[b] = NULL;

spin_unlock(sp);

kfree(p);

return 1;

. Thread O invokes delete(0), and reaches line 10 of the listing,

acquiring the lock.

Thread 1 concurrently invokes delete (0), reaching line 10, but spins
on the lock because Thread 0 holds it.

. Thread O executes lines 11-14, removing the element from the hashtable,

releasing the lock, and then freeing the element.

Thread 0 continues execution, and allocates memory, getting the exact
block of memory that it just freed.

. Thread 0 then initializes this block of memory as some other type of

structure.

Thread 1’s spin_lock() operation fails due to the fact that what it
believes to be p->lock is no longer a spinlock.

Because there is no existence guarantee, the identity of the data element
can change while a thread is attempting to acquire that element’s lock on
line 10!

269

One way to fix this example is to use a hashed set of global locks, so that
each hash bucket has its own lock, as shown in Listing 7.10. This approach
allows acquiring the proper lock (on line 9) before gaining a pointer to the
data element (on line 10). Although this approach works quite well for
elements contained in a single partitionable data structure such as the hash
table shown in the listing, it can be problematic if a given data element
can be a member of multiple hash tables or given more-complex data
structures such as trees or graphs. Not only can these problems be solved,
but the solutions also form the basis of lock-based software transactional
memory implementations [ST95, DSS06]. However, Chapter 9 describes
simpler—and faster—ways of providing existence guarantees.

7.5 Locking: Hero or Villain?

You either die a hero or you live long enough to see
yourself become the villain.

Aaron Eckhart as Harvey Dent

As is often the case in real life, locking can be either hero or villain,
depending on how it is used and on the problem at hand. In my experience,
those writing whole applications are happy with locking, those writing
parallel libraries are less happy, and those parallelizing existing sequential
libraries are extremely unhappy. The following sections discuss some
reasons for these differences in viewpoints.

7.5.1 Locking For Applications: Hero!

When writing an entire application (or entire kernel), developers have full
control of the design, including the synchronization design. Assuming that
the design makes good use of partitioning, as discussed in Chapter 6, locking
can be an extremely effective synchronization mechanism, as demonstrated
by the heavy use of locking in production-quality parallel software.
Nevertheless, although such software usually bases most of its synchro-
nization design on locking, such software also almost always makes use of

270

other synchronization mechanisms, including special counting algorithms
(Chapter 5), data ownership (Chapter 8), reference counting (Section 9.2),
hazard pointers (Section 9.3), sequence locking (Section 9.4), and read-copy
update (Section 9.5). In addition, practitioners use tools for deadlock de-
tection [Cor0O6a], lock acquisition/release balancing [Cor04b], cache-miss
analysis [Thel1], hardware-counter-based profiling [EGMdB11, Thel2b],
and many more besides.

Given careful design, use of a good combination of synchronization
mechanisms, and good tooling, locking works quite well for applications
and kernels.

7.5.2 Locking For Parallel Libraries: Just Another Tool

Unlike applications and kernels, the designer of a library cannot know the
locking design of the code that the library will be interacting with. In
fact, that code might not be written for years to come. Library designers
therefore have less control and must exercise more care when laying out
their synchronization design.

Deadlock is of course of particular concern, and the techniques discussed
in Section 7.1.1 need to be applied. One popular deadlock-avoidance strategy
is therefore to ensure that the library’s locks are independent subtrees of the
enclosing program’s locking hierarchy. However, this can be harder than it
looks.

One complication was discussed in Section 7.1.1.2, namely when library
functions call into application code, with gsort ()’s comparison-function
argument being a case in point. Another complication is the interaction
with signal handlers. If an application signal handler is invoked from a
signal received within the library function, deadlock can ensue just as surely
as if the library function had called the signal handler directly. A final
complication occurs for those library functions that can be used between
a fork()/exec () pair, for example, due to use of the system() function.
In this case, if your library function was holding a lock at the time of the
fork(), then the child process will begin life with that lock held. Because
the thread that will release the lock is running in the parent but not the child,
if the child calls your library function, deadlock will ensue.

271

The following strategies may be used to avoid deadlock problems in these
cases:

1. Don’t use either callbacks or signals.

2. Don’t acquire locks from within callbacks or signal handlers.
3. Let the caller control synchronization.

4. Parameterize the library API to delegate locking to caller.

5. Explicitly avoid callback deadlocks.

6. Explicitly avoid signal-handler deadlocks.

7. Avoid invoking fork ().

Each of these strategies is discussed in one of the following sections.

7.5.2.1 Use Neither Callbacks Nor Signals

If a library function avoids callbacks and the application as a whole avoids
signals, then any locks acquired by that library function will be leaves of
the locking-hierarchy tree. This arrangement avoids deadlock, as discussed
in Section 7.1.1.1. Although this strategy works extremely well where
it applies, there are some applications that must use signal handlers, and
there are some library functions (such as the gsort () function discussed
in Section 7.1.1.2) that require callbacks.

The strategy described in the next section can often be used in these cases.

7.5.2.2 Avoid Locking in Callbacks and Signal Handlers

If neither callbacks nor signal handlers acquire locks, then they cannot be
involved in deadlock cycles, which allows straightforward locking hierarchies
to once again consider library functions to be leaves on the locking-hierarchy
tree. This strategy works very well for most uses of gsort, whose callbacks
usually simply compare the two values passed in to them. This strategy also
works wonderfully for many signal handlers, especially given that acquiring

272

locks from within signal handlers is generally frowned upon [Gro01],'° but
can fail if the application needs to manipulate complex data structures from
a signal handler.

Here are some ways to avoid acquiring locks in signal handlers even if
complex data structures must be manipulated:

1. Use simple data structures based on non-blocking synchronization, as
will be discussed in Section 14.2.1.

2. If the data structures are too complex for reasonable use of non-
blocking synchronization, create a queue that allows non-blocking
enqueue operations. In the signal handler, instead of manipulating the
complex data structure, add an element to the queue describing the
required change. A separate thread can then remove elements from
the queue and carry out the required changes using normal locking.
There are a number of readily available implementations of concurrent
queues [KLP12, Des09b, MS96].

This strategy should be enforced with occasional manual or (preferably)
automated inspections of callbacks and signal handlers. When carrying
out these inspections, be wary of clever coders who might have (unwisely)
created home-brew locks from atomic operations.

7.5.2.3 Caller Controls Synchronization

Letting the caller control synchronization works extremely well when the
library functions are operating on independent caller-visible instances of a
data structure, each of which may be synchronized separately. For example,
if the library functions operate on a search tree, and if the application needs a
large number of independent search trees, then the application can associate
a lock with each tree. The application then acquires and releases locks as
needed, so that the library need not be aware of parallelism at all. Instead,
the application controls the parallelism, so that locking can work very well,
as was discussed in Section 7.5.1.

10 But the standard’s words do not stop clever coders from creating their own home-brew
locking primitives from atomic operations.

273

However, this strategy fails if the library implements a data structure that
requires internal concurrency, for example, a hash table or a parallel sort.
In this case, the library absolutely must control its own synchronization.

7.5.2.4 Parameterize Library Synchronization

The idea here is to add arguments to the library’s API to specify which
locks to acquire, how to acquire and release them, or both. This strategy
allows the application to take on the global task of avoiding deadlock by
specifying which locks to acquire (by passing in pointers to the locks in
question) and how to acquire them (by passing in pointers to lock acquisition
and release functions), but also allows a given library function to control
its own concurrency by deciding where the locks should be acquired and
released.

In particular, this strategy allows the lock acquisition and release functions
to block signals as needed without the library code needing to be concerned
with which signals need to be blocked by which locks. The separation of
concerns used by this strategy can be quite effective, but in some cases the
strategies laid out in the following sections can work better.

That said, passing explicit pointers to locks to external APIs must be very
carefully considered, as discussed in Section 7.1.1.5. Although this practice
is sometimes the right thing to do, you should do yourself a favor by looking
into alternative designs first.

7.5.2.5 Explicitly Avoid Callback Deadlocks

The basic rule behind this strategy was discussed in Section 7.1.1.2: “Release
all locks before invoking unknown code.” This is usually the best approach
because it allows the application to ignore the library’s locking hierarchy:
The library remains a leaf or isolated subtree of the application’s overall
locking hierarchy.

In cases where it is not possible to release all locks before invoking
unknown code, the layered locking hierarchies described in Section 7.1.1.3
can work well. For example, if the unknown code is a signal handler, this
implies that the library function block signals across all lock acquisitions,
which can be complex and slow. Therefore, in cases where signal handlers

274

(probably unwisely) acquire locks, the strategies in the next section may
prove helpful.

7.5.2.6 Explicitly Avoid Signal-Handler Deadlocks

Suppose that a given library function is known to acquire locks, but does not
block signals. Suppose further that it is necessary to invoke that function
both from within and outside of a signal handler, and that it is not permissible
to modify this library function. Of course, if no special action is taken, then
if a signal arrives while that library function is holding its lock, deadlock
can occur when the signal handler invokes that same library function, which
in turn attempts to re-acquire that same lock.

Such deadlocks can be avoided as follows:

1. If the application invokes the library function from within a signal
handler, then that signal must be blocked every time that the library
function is invoked from outside of a signal handler.

2. If the application invokes the library function while holding a lock
acquired within a given signal handler, then that signal must be blocked
every time that the library function is called outside of a signal handler.

These rules can be enforced by using tools similar to the Linux kernel’s
lockdep lock dependency checker [Cor0O6a]. One of the great strengths of
lockdep is that it is not fooled by human intuition [Ros11].

7.5.2.7 Library Functions Used Between fork () and exec()

As noted earlier, if a thread executing a library function is holding a lock at
the time that some other thread invokes fork (), the fact that the parent’s
memory is copied to create the child means that this lock will be born held
in the child’s context. The thread that will release this lock is running in the
parent, but not in the child, which means that the child’s copy of this lock
will never be released. Therefore, any attempt on the part of the child to
invoke that same library function will result in deadlock.

A pragmatic and straightforward way of solving this problem is to fork ()
a child process while the process is still single-threaded, and have this child

275

process remain single-threaded. Requests to create further child processes
can then be communicated to this initial child process, which can safely
carry out any needed fork() and exec() system calls on behalf of its
multi-threaded parent process.

Another rather less pragmatic and straightforward solution to this problem
is to have the library function check to see if the owner of the lock is still
running, and if not, “breaking” the lock by re-initializing and then acquiring
it. However, this approach has a couple of vulnerabilities:

1. The data structures protected by that lock are likely to be in some
intermediate state, so that naively breaking the lock might result in
arbitrary memory corruption.

2. If the child creates additional threads, two threads might break the lock
concurrently, with the result that both threads believe they own the
lock. This could again result in arbitrary memory corruption.

The pthread_atfork() function is provided to help deal with these
situations. The idea is to register a triplet of functions, one to be called
by the parent before the fork (), one to be called by the parent after the
fork(), and one to be called by the child after the fork (). Appropriate
cleanups can then be carried out at these three points.

Be warned, however, that coding of pthread_atfork() handlers is
quite subtle in general. The cases where pthread_atfork() works best
are cases where the data structure in question can simply be re-initialized by
the child.

7.5.2.8 Parallel Libraries: Discussion

Regardless of the strategy used, the description of the library’s API must
include a clear description of that strategy and how the caller should interact
with that strategy. In short, constructing parallel libraries using locking is
possible, but not as easy as constructing a parallel application.

276

7.5.3 Locking For Parallelizing Sequential Libraries: Vil-
lain!

With the advent of readily available low-cost multicore systems, a common
task is parallelizing an existing library that was designed with only single-
threaded use in mind. This all-too-common disregard for parallelism can
result in a library API that is severely flawed from a parallel-programming
viewpoint. Candidate flaws include:

1. Implicit prohibition of partitioning.
2. Callback functions requiring locking.
3. Object-oriented spaghetti code.

These flaws and the consequences for locking are discussed in the
following sections.

7.5.3.1 Partitioning Prohibited

Suppose that you were writing a single-threaded hash-table implementation.
It is easy and fast to maintain an exact count of the total number of items
in the hash table, and also easy and fast to return this exact count on each
addition and deletion operation. So why not?

One reason is that exact counters do not perform or scale well on
multicore systems, as was seen in Chapter 5. As a result, the parallelized
implementation of the hash table will not perform or scale well.

So what can be done about this? One approach is to return an approximate
count, using one of the algorithms from Chapter 5. Another approach is to
drop the element count altogether.

Either way, it will be necessary to inspect uses of the hash table to see
why the addition and deletion operations need the exact count. Here are a
few possibilities:

1. Determining when to resize the hash table. In this case, an approximate
count should work quite well. It might also be useful to trigger the
resizing operation from the length of the longest chain, which can be
computed and maintained in a nicely partitioned per-chain manner.

271

2. Producing an estimate of the time required to traverse the entire hash
table. An approximate count works well in this case, also.

3. For diagnostic purposes, for example, to check for items being lost
when transferring them to and from the hash table. This clearly requires
an exact count. However, given that this usage is diagnostic in nature,
it might suffice to maintain the lengths of the hash chains, then to
infrequently sum them up while locking out addition and deletion
operations.

It turns out that there is now a strong theoretical basis for some of the
constraints that performance and scalability place on a parallel library’s
APIs [AGH*11a, AGH*11b, McK11b]. Anyone designing a parallel library
needs to pay close attention to those constraints.

Although it is all too easy to blame locking for what are really problems
due to a concurrency-unfriendly API, doing so is not helpful. On the other
hand, one has little choice but to sympathize with the hapless developer who
made this choice in (say) 1985. It would have been a rare and courageous
developer to anticipate the need for parallelism at that time, and it would
have required an even more rare combination of brilliance and luck to
actually arrive at a good parallel-friendly API.

Times change, and code must change with them. That said, there might be
a huge number of users of a popular library, in which case an incompatible
change to the API would be quite foolish. Adding a parallel-friendly API
to complement the existing heavily used sequential-only API is usually the
best course of action.

Nevertheless, human nature being what it is, we can expect our hapless
developer to be more likely to complain about locking than about his or her
own poor (though understandable) API design choices.

7.5.3.2 Deadlock-Prone Callbacks

Sections 7.1.1.2, 7.1.1.3, and 7.5.2 described how undisciplined use of
callbacks can result in locking woes. These sections also described how to
design your library function to avoid these problems, but it is unrealistic to
expect a 1990s programmer with no experience in parallel programming to

278

have followed such a design. Therefore, someone attempting to parallelize
an existing callback-heavy single-threaded library will likely have many
opportunities to curse locking’s villainy.

If there are a very large number of uses of a callback-heavy library, it
may be wise to again add a parallel-friendly API to the library in order
to allow existing users to convert their code incrementally. Alternatively,
some advocate use of transactional memory in these cases. While the jury
is still out on transactional memory, Section 17.2 discusses its strengths and
weaknesses. It is important to note that hardware transactional memory
(discussed in Section 17.3) cannot help here unless the hardware transactional
memory implementation provides forward-progress guarantees, which few
do. Other alternatives that appear to be quite practical (if less heavily hyped)
include the methods discussed in Sections 7.1.1.6 and 7.1.1.7, as well as
those that will be discussed in Chapters 8 and 9.

7.5.3.3 Object-Oriented Spaghetti Code

Object-oriented programming went mainstream sometime in the 1980s or
1990s, and as a result there is a huge amount of single-threaded object-
oriented code in production. Although object orientation can be a valuable
software technique, undisciplined use of objects can easily result in object-
oriented spaghetti code. In object-oriented spaghetti code, control flits from
object to object in an essentially random manner, making the code hard to
understand and even harder, and perhaps impossible, to accommodate a
locking hierarchy.

Although many might argue that such code should be cleaned up in any
case, such things are much easier to say than to do. If you are tasked with
parallelizing such a beast, you can reduce the number of opportunities
to curse locking by using the techniques described in Sections 7.1.1.6
and 7.1.1.7, as well as those that will be discussed in Chapters 8 and 9. This
situation appears to be the use case that inspired transactional memory, so
it might be worth a try as well. That said, the choice of synchronization
mechanism should be made in light of the hardware habits discussed in
Chapter 3. After all, if the overhead of the synchronization mechanism is

279

orders of magnitude more than that of the operations being protected, the
results are not going to be pretty.

And that leads to a question well worth asking in these situations: Should
the code remain sequential? For example, perhaps parallelism should be
introduced at the process level rather than the thread level. In general,
if a task is proving extremely hard, it is worth some time spent thinking
about not only alternative ways to accomplish that particular task, but also
alternative tasks that might better solve the problem at hand.

7.6 Summary

Achievement unlocked.

Unknown

Locking is perhaps the most widely used and most generally useful synchro-
nization tool. However, it works best when designed into an application
or library from the beginning. Given the large quantity of pre-existing
single-threaded code that might need to one day run in parallel, locking
should therefore not be the only tool in your parallel-programming toolbox.
The next few chapters will discuss other tools, and how they can best be
used in concert with locking and with each other.

Chapter 8
Data Ownership

It is mine, I tell you. My own. My precious. Yes, my
precious.

Gollum in “The Fellowship of the Ring”,
J.R.R. Tolkien

One of the simplest ways to avoid the synchronization overhead that comes
with locking is to parcel the data out among the threads (or, in the case of
kernels, CPUs) so that a given piece of data is accessed and modified by
only one of the threads. Interestingly enough, data ownership covers each
of the “big three” parallel design techniques: It partitions over threads (or
CPUs, as the case may be), it batches all local operations, and its elimination
of synchronization operations is weakening carried to its logical extreme. It
should therefore be no surprise that data ownership is heavily used: Even
novices use it almost instinctively. In fact, it is so heavily used that this
chapter will not introduce any new examples, but will instead refer back to
those of previous chapters.

Quick Quiz 8.1: What form of data ownership is extremely difficult to avoid
when creating shared-memory parallel programs (for example, using pthreads) in
CorC++? H

There are a number of approaches to data ownership. Section 8.1 presents
the logical extreme in data ownership, where each thread has its own
private address space. Section 8.2 looks at the opposite extreme, where
the data is shared, but different threads own different access rights to the
data. Section 8.3 describes function shipping, which is a way of allowing
other threads to have indirect access to data owned by a particular thread.
Section 8.4 describes how designated threads can be assigned ownership of
a specified function and the related data. Section 8.5 discusses improving
performance by transforming algorithms with shared data to instead use

281

data ownership. Finally, Section 8.6 lists a few software environments that
feature data ownership as a first-class citizen.

8.1 Multiple Processes

A man’s home is his castle

Ancient Laws of England

Section 4.1 introduced the following example:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.1.out

cat compute_it.2.out

[SR

This example runs two instances of the compute_it program in parallel,
as separate processes that do not share memory. Therefore, all data in a
given process is owned by that process, so that almost the entirety of data
in the above example is owned. This approach almost entirely eliminates
synchronization overhead. The resulting combination of extreme simplicity
and optimal performance is obviously quite attractive.

Quick Quiz 8.2: What synchronization remains in the example shown in
Section 8.1? W

‘ Quick Quiz 8.3: Is there any shared data in the example shown in Section 8.1?
|

This same pattern can be written in C as well as in sh, as illustrated by
Listings 4.1 and 4.2.

It bears repeating that these trivial forms of parallelism are not in any
way cheating or ducking responsibility, but are rather simple and elegant
ways to make your code run faster. It is fast, scales well, is easy to program,
easy to maintain, and gets the job done. In addition, taking this approach
(where applicable) allows the developer more time to focus on other things

282
whether these things might involve applying sophisticated single-threaded
optimizations to compute_it on the one hand, or applying sophisticated
parallel-programming patterns to portions of the code where this approach
is inapplicable. What is not to like?

The next section discusses the use of data ownership in shared-memory
parallel programs.

8.2 Partial Data Ownership and pthreads

Give thy mind more to what thou hast than to what
thou hast not.

Marcus Aurelius Antoninus

Concurrent counting (see Chapter 5) uses data ownership heavily, but adds
a twist. Threads are not allowed to modify data owned by other threads, but
they are permitted to read it. In short, the use of shared memory allows
more nuanced notions of ownership and access rights.

For example, consider the per-thread statistical counter implementation
shown in Listing 5.4 on page 118. Here, inc_count () updates only
the corresponding thread’s instance of counter, while read_count ()
accesses, but does not modify, all threads’ instances of counter.

Quick Quiz 8.4: Does it ever make sense to have partial data ownership where
each thread reads only its own instance of a per-thread variable, but writes to other
threads’ instances? H

Partial data ownership is also common within the Linux kernel. For
example, a given CPU might be permitted to read a given set of its own
per-CPU variables only with interrupts disabled, another CPU might be
permitted to read that same set of the first CPU’s per-CPU variables only
when holding the corresponding per-CPU lock. Then that given CPU would
be permitted to update this set of its own per-CPU variables if it both has
interrupts disabled and holds its per-CPU lock. This arrangement can be
thought of as a reader-writer lock that allows each CPU very low-overhead

283
access to its own set of per-CPU variables. There are a great many variations
on this theme.

For its own part, pure data ownership is also both common and useful, for
example, the per-thread memory-allocator caches discussed in Section 6.4.3
starting on page 204. In this algorithm, each thread’s cache is completely
private to that thread.

8.3 Function Shipping

If the mountain will not come to Muhammad, then
Muhammad must go to the mountain.

Essays, Francis Bacon

The previous section described a weak form of data ownership where threads
reached out to other threads’ data. This can be thought of as bringing the
data to the functions that need it. An alternative approach is to send the
functions to the data.

Such an approach is illustrated in Section 5.4.3 beginning on page 144, in
particular the flush_local_count_sig() and flush_local_count ()
functions in Listing 5.18 on page 148.

The flush_local_count_sig() function is a signal handler that acts
as the shipped function. The pthread_kill () function in flush_local_
count () sends the signal—shipping the function—and then waits until
the shipped function executes. This shipped function has the not-unusual
added complication of needing to interact with any concurrently executing
add_count () or sub_count () functions (see Listing 5.19 on page 149
and Listing 5.20 on page 150).

Quick Quiz 8.5: What mechanisms other than POSIX signals may be used for
function shipping? W

284

8.4 Designated Thread

Let a man practice the profession which he best
knows.

Cicero

The earlier sections describe ways of allowing each thread to keep its own
copy or its own portion of the data. In contrast, this section describes a
functional-decomposition approach, where a special designated thread owns
the rights to the data that is required to do its job. The eventually consistent
counter implementation described in Section 5.2.4 provides an example.
This implementation has a designated thread that runs the eventual ()
function shown on lines 17-34 of Listing 5.5. This eventual() thread
periodically pulls the per-thread counts into the global counter, so that
accesses to the global counter will, as the name says, eventually converge
on the actual value.

Quick Quiz 8.6: But none of the data in the eventual () function shown on
lines 17-34 of Listing 5.5 is actually owned by the eventual () thread! In just
what way is this data ownership??? W

8.5 Privatization

There is, of course, a difference between what a man
seizes and what he really possesses.

Pearl S. Buck

One way of improving the performance and scalability of a shared-memory
parallel program is to transform it so as to convert shared data to private
data that is owned by a particular thread.

An excellent example of this is shown in the answer to one of the Quick
Quizzes in Section 6.1.1, which uses privatization to produce a solution
to the Dining Philosophers problem with much better performance and

285

scalability than that of the standard textbook solution. The original problem
has five philosophers sitting around the table with one fork between each
adjacent pair of philosophers, which permits at most two philosophers to
eat concurrently.

We can trivially privatize this problem by providing an additional five
forks, so that each philosopher has his or her own private pair of forks. This
allows all five philosophers to eat concurrently, and also offers a considerable
reduction in the spread of certain types of disease.

In other cases, privatization imposes costs. For example, consider the
simple limit counter shown in Listing 5.7 on page 127. This is an example of
an algorithm where threads can read each others’ data, but are only permitted
to update their own data. A quick review of the algorithm shows that the
only cross-thread accesses are in the summation loop in read_count (). If
this loop is eliminated, we move to the more-efficient pure data ownership,
but at the cost of a less-accurate result from read_count ().

Quick Quiz 8.7: Is it possible to obtain greater accuracy while still maintaining
full privacy of the per-thread data? H

Partial privatization is also possible, with some synchronization require-
ments, but less than in the fully shared case. Some partial-privatization
possibilities were explored in Section 4.3.4.4. Chapter 9 will introduce a
temporal component to data ownership by providing ways of safely taking
public data structures private.

In short, privatization is a powerful tool in the parallel programmer’s
toolbox, but it must nevertheless be used with care. Just like every other
synchronization primitive, it has the potential to increase complexity while
decreasing performance and scalability.

286

8.6 Other Uses of Data Ownership

Everything comes to us that belongs to us if we
create the capacity to receive it.

Rabindranath Tagore

Data ownership works best when the data can be partitioned so that there is
little or no need for cross thread access or update. Fortunately, this situation
is reasonably common, and in a wide variety of parallel-programming
environments.

Examples of data ownership include:

1.

S A

All message-passing environments, such as MPI [MPIO8] and
BOINC [UniO8a].

Map-reduce [JacO8].

Client-server systems, including RPC, web services, and pretty much
any system with a back-end database server.

Shared-nothing database systems.
Fork-join systems with separate per-process address spaces.
Process-based parallelism, such as the Erlang language.

Private variables, for example, C-language on-stack auto variables, in
threaded environments.

Many parallel linear-algebra algorithms, especially those well-suited
for GPGPUs.!

Operating-system kernels adapted for networking, where each con-
nection (also called flow [DKS89, Zha89, McK90]) is assigned to a
specific thread. One recent example of this approach is the IX operating

! But note that a great many other classes of applications have also been ported to

GPGPUs [Mat17, AMD20, NVil7a, NVil7b].

287

system [BPP*16]. IX does have some shared data structures, which
use synchronization mechanisms to be described in Section 9.5.

Data ownership is perhaps the most underappreciated synchronization
mechanism in existence. When used properly, it delivers unrivaled simplicity,
performance, and scalability. Perhaps its simplicity costs it the respect that
it deserves. Hopefully a greater appreciation for the subtlety and power of
data ownership will lead to greater level of respect, to say nothing of leading
to greater performance and scalability coupled with reduced complexity.

288

Chapter 9
Deferred Processing

All things come to those who wait.

Violet Fane

The strategy of deferring work goes back before the dawn of recorded history.
It has occasionally been derided as procrastination or even as sheer laziness.
However, in the last few decades workers have recognized this strategy’s
value in simplifying and streamlining parallel algorithms [KL80, Mas92].
Believe it or not, “laziness” in parallel programming often outperforms and
out-scales industriousness! These performance and scalability benefits stem
from the fact that deferring work can enable weakening of synchronization
primitives, thereby reducing synchronization overhead. General approaches
of work deferral include reference counting (Section 9.2), hazard pointers
(Section 9.3), sequence locking (Section 9.4), and RCU (Section 9.5).
Finally, Section 9.6 describes how to choose among the work-deferral
schemes covered in this chapter and Section 9.7 discusses updates. But
first, Section 9.1 will introduce an example algorithm that will be used to
compare and contrast these approaches.

9.1 Running Example

An ounce of application is worth a ton of abstraction.

Booker T. Washington

This chapter will use a simplified packet-routing algorithm to demonstrate
the value of these approaches and to allow them to be compared. Routing
algorithms are used in operating-system kernels to deliver each outgoing
TCP/IP packet to the appropriate network interface. This particular algo-

289

route_list

!

->addr=42 ->addr=56 ->addr=17

> > ->iface=7

->iface=1 ->iface=3

Figure 9.1: Pre-BSD Packet Routing List

rithm is a simplified version of the classic 1980s packet-train-optimized
algorithm used in BSD UNIX [Jac88], consisting of a simple linked list.!
Modern routing algorithms use more complex data structures, however
a simple algorithm will help highlight issues specific to parallelism in a
straightforward setting.

We further simplify the algorithm by reducing the search key from a
quadruple consisting of source and destination IP addresses and ports all the
way down to a simple integer. The value looked up and returned will also be
a simple integer, so that the data structure is as shown in Figure 9.1, which
directs packets with address 42 to interface 1, address 56 to interface 3, and
address 17 to interface 7. This list will normally be searched frequently
and updated rarely. In Chapter 3 we learned that the best ways to evade
inconvenient laws of physics, such as the finite speed of light and the atomic
nature of matter, is to either partition the data or to rely on read-mostly
sharing. This chapter applies read-mostly sharing techniques to Pre-BSD
packet routing.

Listing 9.1 (route_seq. c) shows a simple single-threaded implemen-
tation corresponding to Figure 9.1. Lines 1-5 define a route_entry
structure and line 6 defines the route_list header. Lines 8-20 define
route_lookup(), which sequentially searches route_list, returning
the corresponding ->iface, or ULONG_MAX if there is no such route en-

! In other words, this is not OpenBSD, NetBSD, or even FreeBSD, but none other than
Pre-BSD.

290

Listing 9.1: Sequential Pre-BSD Routing Table

1
2
3
4
5
6
7
8
9

10
11
12
13

36

struct route_entry {

[

struct cds_list_head re_next;
unsigned long addr;
unsigned long iface;

CDS_LIST_HEAD(route_list);

unsigned long route_lookup(unsigned long addr)

-~

}

struct route_entry *rep;
unsigned long ret;

cds_list_for_each_entry(rep, &route_list, re_next) {
if (rep->addr == addr) {
ret = rep->iface;
return ret;
}
}
return ULONG_MAX;

int route_add(unsigned long addr, unsigned long interface)

{

}

struct route_entry *rep;

rep = malloc(sizeof (*¥rep));
if (!rep)

return -ENOMEM;
rep->addr = addr;
rep->iface = interface;
cds_list_add(&rep->re_next, &route_list);
return O;

int route_del(unsigned long addr)

{

struct route_entry *rep;

cds_list_for_each_entry(rep, &route_list, re_next) {
if (rep->addr == addr) {
cds_list_del(&rep->re_next);
free(rep);
return 0;
}
¥
return -ENOENT;

291

try. Lines 22-33 define route_add (), which allocates a route_entry
structure, initializes it, and adds it to the list, returning ~-ENOMEM in case
of memory-allocation failure. Finally, lines 35-47 define route_del (),
which removes and frees the specified route_entry structure if it exists,
or returns ~ENOENT otherwise.

This single-threaded implementation serves as a prototype for the various
concurrent implementations in this chapter, and also as an estimate of ideal
scalability and performance.

9.2 Reference Counting

I am never letting you go!

Unknown

Reference counting tracks the number of references to a given object in
order to prevent that object from being prematurely freed. As such, it has
a long and honorable history of use dating back to at least an early 1960s
Weizenbaum paper [Wei63]. Weizenbaum discusses reference counting
as if it was already well-known, so it likely dates back to the 1950s or
even to the 1940s. And perhaps even further, given that people repairing
large dangerous machines have long used a mechanical reference-counting
technique implemented via padlocks. Before entering the machine, each
worker locks a padlock onto the machine’s on/off switch, thus preventing
the machine from being powered on while that worker is inside. Reference
counting is thus an excellent time-honored candidate for a concurrent
implementation of Pre-BSD routing.

To that end, Listing 9.2 shows data structures and the route_lookup ()
function and Listing 9.3 shows the route_add () and route_del () func-
tions (all at route_refcnt.c). Since these algorithms are quite similar to
the sequential algorithm shown in Listing 9.1, only the differences will be
discussed.

Starting with Listing 9.2, line 2 adds the actual reference counter, line 6
adds a —->re_freed use-after-free check field, line 9 adds the routelock
that will be used to synchronize concurrent updates, and lines 11-15 add

292

Listing 9.2: Reference-Counted Pre-BSD Routing Table Lookup (BUGGY!!!)

};

1
2
3
4
5
6
7
8

struct route_entry {

atomic_t re_refcnt;

struct route_entry *re_next;
unsigned long addr;
unsigned long iface;

int re_freed;

struct route_entry route_list;

9 DEFINE_SPINLOCK(routelock);

10

11 static void re_free(struct route_entry *rep)

12 {

15}

WRITE_ONCE(rep->re_freed, 1);
free(rep);

17 unsigned long route_lookup(unsigned long addr)

18 {

25 retry:

int old;

int new;

struct route_entry *rep;
struct route_entry **repp;
unsigned long ret;

repp = &route_list.re_next;
rep = NULL;
do {
if (rep && atomic_dec_and_test(&rep->re_refcnt))
re_free(rep);
rep = READ_ONCE (xrepp) ;
if (rep == NULL)
return ULONG_MAX;
do {
if (READ_ONCE(rep->re_freed))
abort();
old = atomic_read(&rep->re_refcnt);
if (old <= 0)
goto retry;
new = old + 1;
} while (atomic_cmpxchg(&rep->re_refcnt,
old, new) != old);
repp = &rep->re_next;
} while (rep->addr != addr);
ret = rep->iface;
if (atomic_dec_and_test(&rep->re_refcnt))
re_free(rep);
return ret;

293

Listing 9.3: Reference-Counted Pre-BSD Routing Table Add/Delete (BUGGY!!!)

1 int route_add(unsigned long addr, unsigned long interface)
2 {

3 struct route_entry *rep;

4

5 rep = malloc(sizeof (*rep));

6 if (lrep)

7 return -ENOMEM;

8 atomic_set (&rep->re_refcnt, 1);

9 rep->addr = addr;

10 rep->iface = interface;

11 spin_lock(&routelock) ;

12 rep->re_next = route_list.re_next;

13 rep->re_freed = 0;

14 route_list.re_next = rep;

15 spin_unlock(&routelock) ;

16 return 0;

17}

18

19 int route_del(unsigned long addr)

20 {

21 struct route_entry *rep;

22 struct route_entry **repp;

23

24 spin_lock(&routelock) ;

25 repp = &route_list.re_next;

2 for (;) {

27 rep = *repp;

28 if (rep == NULL)

29 break;

30 if (rep->addr == addr) {

31 *repp = rep->re_next;
32 spin_unlock(&routelock) ;
33 if (atomic_dec_and_test(&rep->re_refcnt))
34 re_free(rep);
35 return 0;

36 }

37 repp = &rep->re_next;

38 i

39 spin_unlock(&routelock) ;

40 return -ENOENT;

294

2.5x107
2x107
1.5x107

1x107

Lookups per Millisecond

5x10°

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 9.2: Pre-BSD Routing Table Protected by Reference Counting

re_free(), which sets ->re_freed, enabling route_lookup () to check
for use-after-free bugs. In route_lookup () itself, lines 29-30 release the
reference count of the prior element and free it if the count becomes zero,
and lines 34—42 acquire a reference on the new element, with lines 35 and 36
performing the use-after-free check.

[Quick Quiz 9.1: Why bother with a use-after-free check? H J

InListing 9.3, lines 11, 15, 24, 32, and 39 introduce locking to synchronize
concurrent updates. Line 13 initializes the ->re_freed use-after-free-check
field, and finally lines 33-34 invoke re_free() if the new value of the
reference count is zero.

Quick Quiz 9.2: Why doesn’t route_del () in Listing 9.3 use reference counts
to protect the traversal to the element to be freed? W

Figure 9.2 shows the performance and scalability of reference counting
on a read-only workload with a ten-element list running on an eight-socket
28-core-per-socket hyperthreaded 2.1 GHz x86 system with a total of 448
hardware threads (hps.2019.12.02a/1scpu.hps). The “ideal” trace was
generated by running the sequential code shown in Listing 9.1, which

295

works only because this is a read-only workload. The reference-counting
performance is abysmal and its scalability even more so, with the “refcnt”
trace indistinguishable from the x-axis. This should be no surprise in view
of Chapter 3: The reference-count acquisitions and releases have added
frequent shared-memory writes to an otherwise read-only workload, thus
incurring severe retribution from the laws of physics. As well it should,
given that all the wishful thinking in the world is not going to increase
the speed of light or decrease the size of the atoms used in modern digital
electronics.

Quick Quiz 9.3: Why the break in the “ideal” line at 224 CPUs in Figure 9.2?
Shouldn’t it be a straight line? H

of the x-axis??? W

Quick Quiz 9.4: Shouldn’t the refent trace in Figure 9.2 be at least a little bit off ’

But it gets worse.

Running multiple updater threads repeatedly invoking route_add () and
route_del () will quickly encounter the abort () statement on line 36
of Listing 9.2, which indicates a use-after-free bug. This in turn means
that the reference counts are not only profoundly degrading scalability and
performance, but also failing to provide the needed protection.

One sequence of events leading to the use-after-free bug is as follows,
given the list shown in Figure 9.1:

1. Thread A looks up address 42, reaching line 32 of route_lookup ()
in Listing 9.2. In other words, Thread A has a pointer to the first
element, but has not yet acquired a reference to it.

2. Thread B invokes route_del () in Listing 9.3 to delete the route entry
for address 42. It completes successfully, and because this entry’s
->re_refcnt field was equal to the value one, it invokes re_free ()
to set the ->re_freed field and to free the entry.

3. Thread A continues execution of route_lookup (). Its rep pointer is
non-NULL, but line 35 sees that its —>re_freed field is non-zero, so
line 36 invokes abort ().

296

The problem is that the reference count is located in the object to be
protected, but that means that there is no protection during the instant in
time when the reference count itself is being acquired! This is the reference-
counting counterpart of a locking issue noted by Gamsa et al. [GKAS99].
One could imagine using a global lock or reference count to protect the
per-route-entry reference-count acquisition, but this would result in severe
contention issues. Although algorithms exist that allow safe reference-count
acquisition in a concurrent environment [Val95], they are not only extremely
complex and error-prone [MS95], but also provide terrible performance and
scalability [HMBWO07].

In short, concurrency has most definitely reduced the usefulness of
reference counting! Of course, as with other synchronization primitives,
reference counts also have well-known ease-of-use shortcomings. These
can result in memory leaks on the one hand or premature freeing on the
other.

Quick Quiz 9.5: If concurrency has “most definitely reduced the usefulness
of reference counting”, why are there so many reference counters in the Linux
kernel? H

It is sometimes helpful to look at a problem in an entirely different way
in order to successfully solve it. To this end, the next section describes what
could be thought of as an inside-out reference count that provides decent
performance and scalability.

9.3 Hazard Pointers

If in doubt, turn it inside out.

Zara Carpenter

One way of avoiding problems with concurrent reference counting is to
implement the reference counters inside out, that is, rather than incrementing
an integer stored in the data element, instead store a pointer to that data
element in per-CPU (or per-thread) lists. Each element of these lists is

297

Listing 9.4: Hazard-Pointer Recording and Clearing

static inline void *_h_t_r_impl(void **p,

1

2 hazard_pointer *hp)
3 {

4 void *tmp;

5

6 tmp = READ_ONCE(*p);

7 if ('tmp || tmp == (void *)HAZPTR_POISON)
8 return tmp;

9 WRITE_ONCE (hp->p, tmp);

10 smp_mb () ;

1 if (tmp == READ_ONCE(#p))

12 return tmp;

13 return (void *)HAZPTR_POISON;

14}

16 #define hp_try_record(p, hp) _h_t_r_impl((void **)(p), hp)

18 static inline void *hp_record(void **p,

19 hazard_pointer *hp)
20 {

21 void *tmp;

2

23 do {

2 tmp = hp_try_record(*p, hp);

25 } while (tmp == (void *)HAZPTR_POISON) ;
26 return tmp;

27 }

28

29 static inline void hp_clear(hazard_pointer *hp)
30 {

31 smp_mb() ;

32 WRITE_ONCE (hp->p, NULL);

3}

called a hazard pointer [Mic0O4a].> The value of a given data element’s
“virtual reference counter” can then be obtained by counting the number
of hazard pointers referencing that element. Therefore, if that element has
been rendered inaccessible to readers, and there are no longer any hazard
pointers referencing it, that element may safely be freed.

Of course, this means that hazard-pointer acquisition must be carried
out quite carefully in order to avoid destructive races with concurrent
deletion. One implementation is shown in Listing 9.4, which shows

2 Also independently invented by others [HLMO02].

298

hp_try_record() on lines 1-16, hp_record() on lines 18-27, and
hp_clear () on lines 29-33 (hazptr.h).

The hp_try_record() macro on line 16 is simply a casting wrapper for
the _h_t_r_impl () function, which attempts to store the pointer referenced
by p into the hazard pointer referenced by hp. If successful, it returns the
value of the stored pointer. If it fails due to that pointer being NULL, it
returns NULL. Finally, if it fails due to racing with an update, it returns a
special HAZPTR_POISON token.

Quick Quiz 9.6: Given that papers on hazard pointers use the bottom bits of
each pointer to mark deleted elements, what is up with HAZPTR_P0OISON? M

Line 6 reads the pointer to the object to be protected. If line 8 finds that
this pointer was either NULL or the special HAZPTR_POISON deleted-object
token, it returns the pointer’s value to inform the caller of the failure.
Otherwise, line 9 stores the pointer into the specified hazard pointer, and
line 10 forces full ordering of that store with the reload of the original pointer
on line 11. (See Chapter 15 for more information on memory ordering.) If
the value of the original pointer has not changed, then the hazard pointer
protects the pointed-to object, and in that case, line 12 returns a pointer
to that object, which also indicates success to the caller. Otherwise, if
the pointer changed between the two READ_ONCE() invocations, line 13
indicates failure.

Quick Quiz 9.7: Why does hp_try_record() in Listing 9.4 take a double
indirection to the data element? Why not void * instead of void **? W

The hp_record () function is quite straightforward: It repeatedly invokes
hp_try_record() until the return value is something other than HAZPTR _
POISON.

Quick Quiz 9.8: Why bother with hp_try_record()? Wouldn’t it be easier to
just use the failure-immune hp_record () function? M

The hp_clear () function is even more straightforward, with an smp_
mb () to force full ordering between the caller’s uses of the object protected
by the hazard pointer and the setting of the hazard pointer to NULL.

Once a hazard-pointer-protected object has been removed from its linked
data structure, so that it is now inaccessible to future hazard-pointer readers,

299

Listing 9.5: Hazard-Pointer Scanning and Freeing

1 int compare(const void *a, const void *b)

2 {

3 return (*(hazptr_head_t **)a - *(hazptr_head_t **)b);
4}

5

6 void hazptr_scan()

7 9{

8 hazptr_head_t *cur;

9 int i;

10 hazptr_head_t *tmplist;

11 hazptr_head_t **plist = gplist;

12 unsigned long psize;

13

14 if (plist == NULL) {

15 psize = sizeof (hazptr_head_t *) * K * NR_THREADS;
16 plist = (hazptr_head_t **)malloc(psize);

17 BUG_ON(!plist);

18 gplist = plist;

19

20 smp_mb () ;

21 psize = 0;

22 for (i = 0; i < H; i++) {

23 uintptr_t hp = (uintptr_t)READ_ONCE(HP[il.p);
24

25 if ('hp)

26 continue;

27 plist[psize++] = (hazptr_head_t *)(hp & ~Ox1UL);
28 }

29 smp_mb () ;

30 gsort(plist, psize, sizeof(hazptr_head_t *), compare);
31 tmplist = rlist;

32 rlist = NULL;

33 rcount = 0;

34 while (tmplist != NULL) {

35 cur = tmplist;

36 tmplist = tmplist->next;

37 if (bsearch(&cur, plist, psize,

38 sizeof (hazptr_head_t *), compare)) {
39 cur->next = rlist;

40 rlist = cur;

41 rcount++;

0 } else {

3 hazptr_free(cur);

44 X

45 i

46 }

47

48 void hazptr_free_later (hazptr_head_t *n)

49 {

50 n->next = rlist;

51 rlist = n;

52 rcount++;

53 if (rcount >= R) {

54 hazptr_scan();

55 }

300

it is passed to hazptr_free_later (), which is shown on lines 48-56 of
Listing 9.5 (hazptr.c). Lines 50 and 51 enqueue the object on a per-thread
list r1ist and line 52 counts the object in rcount. If line 53 sees that
a sufficiently large number of objects are now queued, line 54 invokes
hazptr_scan() to attempt to free some of them.

The hazptr_scan() function is shown on lines 6—46 of the listing. This
function relies on a fixed maximum number of threads (NR_THREADS) and
a fixed maximum number of hazard pointers per thread (K), which allows a
fixed-size array of hazard pointers to be used. Because any thread might
need to scan the hazard pointers, each thread maintains its own array, which
is referenced by the per-thread variable gplist. If line 14 determines
that this thread has not yet allocated its gplist, lines 15—18 carry out the
allocation. The memory barrier on line 20 ensures that all threads see
the removal of all objects by this thread before lines 22-28 scan all of the
hazard pointers, accumulating non-NULL pointers into the plist array and
counting them in psize. The memory barrier on line 29 ensures that the
reads of the hazard pointers happen before any objects are freed. Line 30
then sorts this array to enable use of binary search below.

Lines 31 and 32 remove all elements from this thread’s list of to-be-freed
objects, placing them on the local tmplist and line 33 zeroes the count.
Each pass through the loop spanning lines 34—45 processes each of the
to-be-freed objects. Lines 35 and 36 remove the first object from tmplist,
and if lines 37 and 38 determine that there is a hazard pointer protecting
this object, lines 39—41 place it back onto rlist. Otherwise, line 43 frees
the object.

The Pre-BSD routing example can use hazard pointers as shown in
Listing 9.6 for data structures and route_lookup (), and in Listing 9.7 for
route_add() and route_del() (route_hazptr.c). As with reference
counting, the hazard-pointers implementation is quite similar to the sequen-
tial algorithm shown in Listing 9.1 on page 290, so only differences will be
discussed.

Starting with Listing 9.6, line 2 shows the ->hh field used to queue
objects pending hazard-pointer free, line 6 shows the ->re_freed field
used to detect use-after-free bugs, and line 21 invokes hp_try_record ()
to attempt to acquire a hazard pointer. If the return value is NULL, line 23

301

Listing 9.6: Hazard-Pointer Pre-BSD Routing Table Lookup

I struct route_entry {

2 struct hazptr_head hh;

3 struct route_entry *re_next;
4 unsigned long addr;

5 unsigned long iface;

6 int re_freed;

7}

8 struct route_entry route_list;

9 DEFINE_SPINLOCK(routelock);

10 hazard_pointer __thread *my_hazptr;
11

12 unsigned long route_lookup(unsigned long addr)

13 {

14 int offset = 0O;

15 struct route_entry *rep;

16 struct route_entry **repp;

17

18 retry:

19 repp = &route_list.re_next;

20 do {

21 rep = hp_try_record(repp, &my_hazptr[offset]);
2 if (lrep)

23 return ULONG_MAX;

24 if ((uintptr_t)rep == HAZPTR_POISON)
25 goto retry;

26 repp = &rep->re_next;

27 } while (rep->addr != addr);

28 if (READ_ONCE(rep->re_freed))

29 abort();

30 return rep->iface;

31}

302

returns a not-found indication to the caller. If the call to hp_try_record()
raced with deletion, line 25 branches back to line 18’s retry to re-traverse
the list from the beginning. The do—while loop falls through when the
desired element is located, but if this element has already been freed, line 29
terminates the program. Otherwise, the element’s ->iface field is returned
to the caller.

Note that line 21 invokes hp_try_record () rather than the easier-to-use
hp_record(), restarting the full search upon hp_try_record() failure.
And such restarting is absolutely required for correctness. To see this,
consider a hazard-pointer-protected linked list containing elements A, B,
and C that is subjected to the following sequence of events:

1. Thread O stores a hazard pointer to element B (having presumably
traversed to element B from element A).

2. Thread 1 removes element B from the list, which sets the pointer
from element B to element C to the special HAZPTR_POISON value in
order to mark the deletion. Because Thread 0 has a hazard pointer to
element B, it cannot yet be freed.

3. Thread 1 removes element C from the list. Because there are no hazard
pointers referencing element C, it is immediately freed.

4. Thread O attempts to acquire a hazard pointer to now-removed el-
ement B’s successor, but hp_try_record() returns the HAZPTR_
POISON value, forcing the caller to restart its traversal from the begin-
ning of the list.

Which is a very good thing, because B’s successor is the now-freed
element C, which means that Thread 0’s subsequent accesses might have
resulted in arbitrarily horrible memory corruption, especially if the memory
for element C had since been re-allocated for some other purpose. Therefore,
hazard-pointer readers must typically restart the full traversal in the face of a
concurrent deletion. Often the restart must go back to some global (and thus
immortal) pointer, but it is sometimes possible to restart at some intermediate
location if that location is guaranteed to still be live, for example, due to the
current thread holding a lock, a reference count, etc.

303

Quick Quiz 9.9: Readers must “typically” restart? What are some exceptions?

Because algorithms using hazard pointers might be restarted at any step
of their traversal through the linked data structure, such algorithms must
typically take care to avoid making any changes to the data structure until
after they have acquired all the hazard pointers that are required for the
update in question.

Quick Quiz 9.10: But don’t these restrictions on hazard pointers also apply to
other forms of reference counting? M

These hazard-pointer restrictions result in great benefits to readers,
courtesy of the fact that the hazard pointers are stored local to each CPU
or thread, which in turn allows traversals to be carried out without any
writes to the data structures being traversed. Referring back to Figure 5.8 on
page 162, hazard pointers enable the CPU caches to do resource replication,
which in turn allows weakening of the parallel-access-control mechanism,
thus boosting performance and scalability.

Another advantage of restarting hazard pointers traversals is a reduction
in minimal memory footprint: Any object not currently referenced by some
hazard pointer may be immediately freed. In contrast, Section 9.5 will
discuss a mechanism that avoids read-side retries (and minimizes read-side
overhead), but which can result in a much larger memory footprint.

The route_add () and route_del () functions are shown in Listing 9.7.
Line 10 initializes ->re_freed, line 31 poisons the ->re_next field of
the newly removed object, and line 33 passes that object to the hazptr_
free_later () function, which will free that object once it is safe to do so.
The spinlocks work the same as in Listing 9.3.

Figure 9.3 shows the hazard-pointers-protected Pre-BSD routing algo-
rithm’s performance on the same read-only workload as for Figure 9.2.
Although hazard pointers scale far better than does reference counting, haz-
ard pointers still require readers to do writes to shared memory (albeit with
much improved locality of reference), and also require a full memory barrier
and retry check for each object traversed. Therefore, hazard-pointers perfor-
mance is still far short of ideal. On the other hand, unlike naive approaches to
concurrent reference-counting, hazard pointers not only operate correctly for

Listing 9.7: Hazard-Pointer Pre-BSD Routing Table Add/Delete

1 i
2 {
3
4
5
6
7
8
9

10
11
12
13
14
15

16 ¥

nt route_add(unsigned long addr, unsigned long interface)

struct route_entry *rep;

rep = malloc(sizeof (*rep));

if (!rep)

return -ENOMEM;
rep->addr = addr;
rep->iface = interface;
rep->re_freed = 0;
spin_lock(&routelock) ;
rep->re_next = route_list.re_next;
route_list.re_next = rep;
spin_unlock(&routelock) ;

return 0;

18 int route_del(unsigned long addr)

19 {

struct route_entry *rep;
struct route_entry **repp;

spin_lock(&routelock) ;
repp = &route_list.re_next;

for (5;) {

rep = *repp;
if (rep == NULL)

break;

if (rep->addr == addr) {

}

*repp = rep->re_next;

rep->re_next = (struct route_entry *)HAZPTR_POISON;
spin_unlock(&routelock) ;

hazptr_free_later (&rep->hh);

return 0;

repp = &rep->re_next;

}

spin_unlock(&routelock) ;

return -ENOENT;

2.5x107

T 210’ |

o

[$]

&

= 7

E 15310 [

3

g

@ 1x10” |-

=)

x

8

S sx10® |- .
et T

it

e

hazptr

0
0 50 100150200250 300350400450

Number of CPUs (Threads)

Figure 9.3: Pre-BSD Routing Table Protected by Hazard Pointers

workloads involving concurrent updates, but also exhibit excellent scalability.
Additional performance comparisons with other mechanisms may be found

in Chapter 10 and in other publications [HMBWO07, McK13, Mic04a].

Quick Quiz 9.11: Figure 9.3 shows no sign of hyperthread-induced flattening at

224 threads. Why is that?

Quick Quiz 9.12: The paper “Structured Deferral: Synchronization via Pro-
crastination” [McK13] shows that hazard pointers have near-ideal performance.

Whatever happened in Figure 9.3??? W

The next section attempts to improve on hazard pointers by using sequence
locks, which avoid both read-side writes and per-object memory barriers.

306

AR, | finally got
done reading!

No, you didn't!
Start over!

Figure 9.4: Reader And Uncooperative Sequence Lock

9.4 Sequence Locks

It'1l be just like starting over.

John Lennon

The published sequence-lock record [Eas71, Lam77] extends back as far
as that of reader-writer locking, but sequence locks nevertheless remain
in relative obscurity. Sequence locks are used in the Linux kernel for
read-mostly data that must be seen in a consistent state by readers. However,
unlike reader-writer locking, readers do not exclude writers. Instead, like
hazard pointers, sequence locks force readers to refry an operation if they
detect activity from a concurrent writer. As can be seen from Figure 9.4, it
is important to design code using sequence locks so that readers very rarely
need to retry.

Quick Quiz 9.13: Why isn’t this sequence-lock discussion in Chapter 7, you
know, the one on locking? WM

307

Listing 9.8: Sequence-Locking Reader

1 do {

2 seq = read_segbegin(&test_seqlock);
3 /* read-side access. */

4 } while (read_seqretry(&test_seqlock, seq));

Listing 9.9: Sequence-Locking Writer
| write_seqlock(&test_seqlock);

2 /* Update */

3 write_sequnlock(&test_seqlock);

The key component of sequence locking is the sequence number, which
has an even value in the absence of updaters and an odd value if there is an
update in progress. Readers can then snapshot the value before and after
each access. If either snapshot has an odd value, or if the two snapshots differ,
there has been a concurrent update, and the reader must discard the results of
the access and then retry it. Readers therefore use the read_seqgbegin ()
and read_seqretry () functions shown in Listing 9.8 when accessing data
protected by a sequence lock. Writers must increment the value before and
after each update, and only one writer is permitted at a given time. Writers
therefore use the write_seqlock() and write_sequnlock() functions
shown in Listing 9.9 when updating data protected by a sequence lock.

As a result, sequence-lock-protected data can have an arbitrarily large
number of concurrent readers, but only one writer at a time. Sequence
locking is used in the Linux kernel to protect calibration quantities used
for timekeeping. It is also used in pathname traversal to detect concurrent
rename operations.

A simple implementation of sequence locks is shown in Listing 9.10
(seqlock.h). The seqlock_t data structure is shown on lines 1-4,
and contains the sequence number along with a lock to serialize writers.
Lines 6-10 show seqlock_init (), which, as the name indicates, initializes
a seqlock_t.

Lines 12-19 show read_segbegin(), which begins a sequence-lock
read-side critical section. Line 16 takes a snapshot of the sequence counter,
and line 17 orders this snapshot operation before the caller’s critical section.

Listing 9.10: Sequence-Locking Implementation

1
2
3
4
5

39
40
41
42
43

typedef struct {
unsigned long seq;
spinlock_t lock;

} seqlock_t;

static inline void seqlock_init(seqlock_t *slp)
{

slp->seq = 0;

spin_lock_init (&slp->lock);
}

static inline unsigned long read_seqbegin(seqlock_t *slp)
{

unsigned long s;

s = READ_ONCE(slp->seq);
smp_mb () ;
return s & ~0x1UL;

}

static inline int read_seqretry(seqlock_t #*slp,
unsigned long oldseq)

{
unsigned long s;
smp_mb() ;
s = READ_ONCE(slp->seq);
return s != oldseq;

}

static inline void write_seqlock(seqlock_t *slp)
{

spin_lock(&slp->lock);

++slp->seq;

smp_mb () ;
}

static inline void write_sequnlock(seqlock_t *slp)
{

smp_mb () ;

++slp->seq;

spin_unlock(&slp->lock) ;

309

Finally, line 18 returns the value of the snapshot (with the least-significant
bit cleared), which the caller will pass to a later call to read_seqretry ().

Quick Quiz 9.14: Why not have read_segbegin() in Listing 9.10 check for
the low-order bit being set, and retry internally, rather than allowing a doomed
read to start? W

Lines 21-29 show read_seqretry (), which returns true if there was
at least one writer since the time of the corresponding call to read_
segbegin(). Line 26 orders the caller’s prior critical section before
line 27’s fetch of the new snapshot of the sequence counter. Line 28 checks
whether the sequence counter has changed, in other words, whether there
has been at least one writer, and returns true if so.

[Quick Quiz 9.15: Why is the smp_mb() on line 26 of Listing 9.10 needed? l]

Quick Quiz 9.16: Can’t weaker memory barriers be used in the code in
Listing 9.10? W

Quick Quiz 9.17: What prevents sequence-locking updaters from starving
readers? W

Lines 31-36 show write_seqlock(), which simply acquires the lock,
increments the sequence number, and executes a memory barrier to ensure
that this increment is ordered before the caller’s critical section. Lines 38—43
show write_sequnlock(), which executes a memory barrier to ensure
that the caller’s critical section is ordered before the increment of the
sequence number on line 41, then releases the lock.

Quick Quiz 9.18: What if something else serializes writers, so that the lock is
not needed? M

Quick Quiz 9.19: Why isn’t seq on line 2 of Listing 9.10 unsigned rather than
unsigned long? After all, if unsigned is good enough for the Linux kernel,
shouldn’t it be good enough for everyone? M

So what happens when sequence locking is applied to the Pre-BSD routing
table? Listing 9.11 shows the data structures and route_lookup(), and
Listing 9.12 shows route_add () and route_del () (route_seqlock.c).

Listing 9.11: Sequence-Locked Pre-BSD Routing Table Lookup (BUGGY!!!)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

struct route_entry {

};

struct route_entry *re_next;
unsigned long addr;
unsigned long iface;

int re_freed;

struct route_entry route_list;
DEFINE_SEQ_LOCK(sl);

unsigned long route_lookup(unsigned long addr)

{

retry:

struct route_entry *rep;
struct route_entry **repp;
unsigned long ret;
unsigned long s;

s = read_segbegin(&sl);
repp = &route_list.re_next;
do {
rep = READ_ONCE (*repp) ;
if (rep == NULL) {
if (read_seqretry(&sl, s))
goto retry;
return ULONG_MAX;
}
repp = &rep->re_next;
} while (rep->addr != addr);
if (READ_ONCE(rep->re_freed))
abort();
ret = rep->iface;
if (read_seqretry(&sl, s))
goto retry;
return ret;

Listing 9.12: Sequence-Locked Pre-BSD Routing Table Add/Delete (BUGGY!!!)

1 int route_add(unsigned long addr, unsigned long interface)
2 {

3 struct route_entry *rep;

4

5 rep = malloc(sizeof (*rep));

6 if (lrep)

7 return -ENOMEM;

8 rep->addr = addr;

9 rep->iface = interface;

10 rep->re_freed = 0;

1 write_seqlock(&sl);

12 rep->re_next = route_list.re_next;
13 route_list.re_next = rep;

14 write_sequnlock(&sl);

15 return O;

16 }

17

18 int route_del(unsigned long addr)

19 {

20 struct route_entry *rep;

21 struct route_entry **repp;

22

23 write_seqlock(&sl);

24 repp = &route_list.re_next;

25 for (53) {

26 rep = *repp;

27 if (rep == NULL)

28 break;

29 if (rep->addr == addr) {
30 *repp = rep->re_next;
31 write_sequnlock(&sl);
32 smp_mb () ;

33 rep->re_freed = 1;
34 free(rep);

35 return 0;

36 }

37 repp = &rep->re_next;

38 b

39 write_sequnlock(&sl) ;

40 return -ENOENT;

2.5x107

T 210’ | -

o

[$)

&

= 1.5x10° | -

s

g

@ 1x10” |- -

3

S

3 s Tt
et hazptr

| | | | | |

0
0 50 100150200250 300350400450
Number of CPUs (Threads)

Figure 9.5: Pre-BSD Routing Table Protected by Sequence Locking

This implementation is once again similar to its counterparts in earlier
sections, so only the differences will be highlighted.

In Listing 9.11, line 5 adds ->re_freed, which is checked on lines 29
and 30. Line 8 adds a sequence lock, which is used by route_lookup ()
on lines 18, 23, and 32, with lines 24 and 33 branching back to the retry
label on line 17. The effect is to retry any lookup that runs concurrently
with an update.

In Listing 9.12, lines 11, 14, 23, 31, and 39 acquire and release the
sequence lock, while lines 10 and 33 handle ->re_freed. This implemen-
tation is therefore quite straightforward.

It also performs better on the read-only workload, as can be seen in
Figure 9.5, though its performance is still far from ideal. Worse yet, it
suffers use-after-free failures. The problem is that the reader might encounter
a segmentation violation due to accessing an already-freed structure before
read_seqretry() has a chance to warn of the concurrent update.

Quick Quiz 9.20: Can this bug be fixed? In other words, can you use sequence
locks as the only synchronization mechanism protecting a linked list supporting
concurrent addition, deletion, and lookup? W

313

Both the read-side and write-side critical sections of a sequence lock can
be thought of as transactions, and sequence locking therefore can be thought
of as a limited form of transactional memory, which will be discussed in
Section 17.2. The limitations of sequence locking are: (1) Sequence locking
restricts updates and (2) Sequence locking does not permit traversal of
pointers to objects that might be freed by updaters. These limitations are
of course overcome by transactional memory, but can also be overcome by
combining other synchronization primitives with sequence locking.

Sequence locks allow writers to defer readers, but not vice versa. This can
result in unfairness and even starvation in writer-heavy workloads.? On the
other hand, in the absence of writers, sequence-lock readers are reasonably
fast and scale linearly. It is only human to want the best of both worlds: Fast
readers without the possibility of read-side failure, let alone starvation. In
addition, it would also be nice to overcome sequence locking’s limitations
with pointers. The following section presents a synchronization mechanism
with exactly these properties.

9.5 Read-Copy Update (RCU)

“Free” is a very good price!

Tom Peterson

All of the mechanisms discussed in the preceding sections used one of a
number of approaches to defer specific actions until they may be carried
out safely. The reference counters discussed in Section 9.2 use explicit
counters to defer actions that could disturb readers, which results in read-
side contention and thus poor scalability. The hazard pointers covered
by Section 9.3 uses implicit counters in the guise of per-thread lists of
pointer. This avoids read-side contention, but requires readers to do
stores and conditional branches, as well as either full memory barriers in
read-side primitives or real-time-unfriendly inter-processor interrupts in

3 Dmitry Vyukov describes one way to reduce (but, sadly, not eliminate) reader starva-
tion: http://www.1024cores.net/home/lock-free-algorithms/reader-writer-
problem/improved-lock-free-seqlock.

http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock
http://www.1024cores.net/home/lock-free-algorithms/reader-writer-problem/improved-lock-free-seqlock

314

update-side primitives.* The sequence lock presented in Section 9.4 also
avoids read-side contention, but does not protect pointer traversals and, like
hazard pointers, requires either full memory barriers in read-side primitives,
or inter-processor interrupts in update-side primitives. These schemes’
shortcomings raise the question of whether it is possible to do better.

This section introduces read-copy update (RCU), which provides an
API that allows readers to be associated with regions in the source code,
rather than with expensive updates to frequently updated shared data.
The remainder of this section examines RCU from a number of different
perspectives. Section 9.5.1 provides the classic introduction to RCU,
Section 9.5.2 covers fundamental RCU concepts, Section 9.5.3 presents the
Linux-kernel API, Section 9.5.4 introduces some common RCU use cases,
and finally Section 9.5.5 covers recent work related to RCU.

9.5.1 Introduction to RCU

The approaches discussed in the preceding sections have provided good
scalability but decidedly non-ideal performance for the Pre-BSD routing
table. Therefore, in the spirit of “only those who have gone too far know
how far you can go”,” we will go all the way, looking into algorithms in
which concurrent readers execute the same sequence of assembly language
instructions as would a single-threaded lookup, despite the presence of
concurrent updates. Of course, this laudable goal might raise serious
implementability questions, but we cannot possibly succeed if we don’t even

try!

9.5.1.1 Minimal Insertion and Deletion

To minimize implementability concerns, we focus on a minimal data
structure, which consists of a single global pointer that is either NULL or
references a single structure. Minimal though it might be, this data structure
is heavily used in production [RH18]. A classic approach for insertion is

4 In some important special cases, this extra work can be avoided by using link counting
as exemplified by the UnboundedQueue and ConcurrentHashMap data structures implemented
in Folly open-source library (https://github.com/facebook/folly).

5 With apologies to T. S. Eliot.

https://github.com/facebook/folly

(€] gptr

———

) gptr

———

®) gptr

e

smp_store_release(&gptr, p);

4 gptr

R

->addr=42
->iface=1

‘/P

Figure 9.6: Insertion With Concurrent Readers

v2022.09.25ba

315

316

shown in Figure 9.6, which shows four states with time advancing from top
to bottom. The first row shows the initial state, with gptr equal to NULL.
In the second row, we have allocated a structure which is uninitialized, as
indicated by the question marks. In the third row, we have initialized the
structure. Finally, in the fourth and final row, we have updated gptr to
reference the newly allocated and initialized element.

We might hope that this assignment to gptr could use a simple C-
language assignment statement. Unfortunately, Section 4.3.4.1 dashes these
hopes. Therefore, the updater cannot use a simple C-language assignment,
but must instead use smp_store_release() as shown in the figure, or, as
will be seen, rcu_assign_pointer ().

Similarly, one might hope that readers could use a single C-language
assignment to fetch the value of gptr, and be guaranteed to either get the
old value of NULL or to get the newly installed pointer, but either way see
a valid result. Unfortunately, Section 4.3.4.1 dashes these hopes as well.
To obtain this guarantee, readers must instead use READ_ONCE(), or, as
will be seen, rcu_dereference (). However, on most modern computer
systems, each of these read-side primitives can be implemented with a
single load instruction, exactly the instruction that would normally be used
in single-threaded code.

Reviewing Figure 9.6 from the viewpoint of readers, in the first three
states all readers see gptr having the value NULL. Upon entering the fourth
state, some readers might see gptr still having the value NULL while others
might see it referencing the newly inserted element, but after some time,
all readers will see this new element. At all times, all readers will see
gptr as containing a valid pointer. Therefore, it really is possible to add
new data to linked data structures while allowing concurrent readers to
execute the same sequence of machine instructions that is normally used in
single-threaded code. This no-cost approach to concurrent reading provides
excellent performance and scalability, and also is eminently suitable for
real-time use.

Insertion is of course quite useful, but sooner or later, it will also be
necessary to delete data. As can be seen in Figure 9.7, the first step is
easy. Again taking the lessons from Section 4.3.4.1 to heart, smp_store_
release() is used to NULL the pointer, thus moving from the first row

)

gptr

—>

->addr=42
->iface=1

/ Readers?

1 Version

smp_store_release(&gptr, NULL);

)

gptr

->addr=42
->iface=1

/ Readers?

2 Versions

wait for readers???

®3)

gptr

Re%rs?

1 Version

’—

)

gptr

1 Version

Figure 9.7: Deletion With Concurrent Readers

v2022.09.25ba

318

to the second in the figure. At this point, pre-existing readers see the old
structure with ->addr of 42 and ->iface of 1, but new readers will see
a NULL pointer, that is, concurrent readers can disagree on the state, as
indicated by the “2 Versions” in the figure.

Quick Quiz 9.21: Why does Figure 9.7 use smp_store_release() given that
it is storing a NULL pointer? Wouldn’t WRITE_ONCE () work just as well in this
case, given that there is no structure initialization to order against the store of the
NULL pointer? H

Quick Quiz 9.22: Readers running concurrently with each other and with the
procedure outlined in Figure 9.7 can disagree on the value of gptr. Isn’t that just
a wee bit problematic??? H

We get back to a single version simply by waiting for all the pre-existing
readers to complete, as shown in row 3. At that point, all the pre-existing
readers are done, and no later reader has a path to the old data item, so there
can no longer be any readers referencing it. It may therefore be safely freed,
as shown on row 4.

Thus, given a way to wait for pre-existing readers to complete, it is
possible to both add data to and remove data from a linked data structure,
despite the readers executing the same sequence of machine instructions
that would be appropriate for single-threaded execution. So perhaps going
all the way was not too far after all!

But how can we tell when all of the pre-existing readers have in fact
completed? This question is the topic of Section 9.5.1.3. But first, the next
section defines RCU’s core API.

9.5.1.2 Core RCU API

The full Linux-kernel API is quite extensive, with more than one hundred
API members. However, this section will confine itself to six core RCU API
members, which suffices for the upcoming sections introducing RCU and
covering its fundamentals. The full API is covered in Section 9.5.3.

Three members of the core APIs are used by readers. The rcu_read_
lock() and rcu_read_unlock() functions delimit RCU read-side critical

319

Table 9.1: Core RCU API

Primitive Purpose

Readers rcu_read_lock() Start an RCU read-side critical section.
rcu_read_unlock() End an RCU read-side critical section.
rcu_dereference() Safely load an RCU-protected pointer.

Updaters synchronize_rcu() Wait for all pre-existing RCU read-side critical

sections to complete.

call_rcu() Invoke the specified function after all pre-existing
RCU read-side critical sections complete.

rcu_assign_pointer() Safely update an RCU-protected pointer.

sections. These may be nested, so that one rcu_read_lock()-rcu_
read_unlock() pair can be enclosed within another. In this case, the
nested set of RCU read-side critical sections act as one large critical section
covering the full extent of the nested set. The third read-side API member,
rcu_dereference (), fetches an RCU-protected pointer. Conceptually,
rcu_dereference() simply loads from memory, but we will see in
Section 9.5.2.1 that rcu_dereference () must prevent the compiler and
(in one case) the CPU from reordering its load with later memory operations
that dereference this pointer.

[Quick Quiz 9.23: What is an RCU-protected pointer? H]

The other three members of the core APIs are used by updaters. The
synchronize_rcu() function implements the “wait for readers” oper-
ation from Figure 9.7. The call_rcu() function is the asynchronous
counterpart of synchronize_rcu() by invoking the specified function
after all pre-existing RCU readers have completed. Finally, the rcu_
assign_pointer () macro is used to update an RCU-protected pointer.
Conceptually, this is simply an assignment statement, but we will see in Sec-
tion 9.5.2.1 that rcu_assign_pointer () must prevent the compiler and
the CPU from reordering this assignment to precede any prior assignments
used to initialize the pointed-to structure.

320

Quick Quiz 9.24: What does synchronize_rcu() do if it starts at about the
same time as an rcu_read_lock()? H

The core RCU API is summarized in Table 9.1 for easy reference. With
that, we are ready to continue this introduction to RCU with the key RCU
operation, waiting for readers.

9.5.1.3 Waiting for Readers

It is tempting to base the reader-waiting functionality of synchronize_
rcu() and call_rcu() on a reference counter updated by rcu_read_
lock() and rcu_read_unlock(), but Figure 5.1 in Chapter 5 shows
that concurrent reference counting results in extreme overhead. This
extreme overhead was confirmed in the specific case of reference counters
in Figure 9.2 on page 294. Hazard pointers profoundly reduce this overhead,
but, as we saw in Figure 9.3 on page 305, not to zero. Nevertheless, many
RCU implementations make very careful cache-local use of counters.

A second approach observes that memory synchronization is expensive,
and therefore uses registers instead, namely each CPU’s or thread’s program
counter (PC), thus imposing no overhead on readers, at least in the absence
of concurrent updates. The updater polls each relevant PC, and if that PC is
not within read-side code, then the corresponding CPU or thread is within a
quiescent state, in turn signaling the completion of any reader that might
have access to the newly removed data element. Once all CPU’s or thread’s
PCs have been observed to be outside of any reader, the grace period has
completed. Please note that this approach poses some serious challenges,
including memory ordering, functions that are sometimes invoked from
readers, and ever-exciting code-motion optimizations. Nevertheless, this
approach is said to be used in production [Ash15].

A third approach is to simply wait for a fixed period of time that is long
enough to comfortably exceed the lifetime of any reasonable reader [Jac93,
Joh95]. This can work quite well in hard real-time systems [RLPB18],
but in less exotic settings, Murphy says that it is critically important to be
prepared even for unreasonably long-lived readers. To see this, consider
the consequences of failing do so: A data item will be freed while the
unreasonable reader is still referencing it, and that item might well be

321

immediately reallocated, possibly even as a data item of some other type.
The unreasonable reader and the unwitting reallocator would then be
attempting to use the same memory for two very different purposes. The
ensuing mess will at best be exceedingly difficult to debug.

A fourth approach is to wait forever, secure in the knowledge that doing
so will accommodate even the most unreasonable reader. This approach
is also called “leaking memory”, and has a bad reputation due to the
fact that memory leaks often require untimely and inconvenient reboots.
Nevertheless, this is a viable strategy when the update rate and the uptime
are both sharply bounded. For example, this approach could work well in a
high-availability cluster where systems were periodically crashed in order to
ensure that cluster really remained highly available.® Leaking the memory
is also a viable strategy in environments having garbage collectors, in which
case the garbage collector can be thought of as plugging the leak [KL80].
However, if your environment lacks a garbage collector, read on!

A fifth approach avoids the period crashes in favor of periodically
“stopping the world”, as exemplified by the traditional stop-the-world garbage
collector. This approach was also heavily used during the decades before
ubiquitous connectivity, when it was common practice to power systems
off at the end of each working day. However, in today’s always-connected
always-on world, stopping the world can gravely degrade response times,
which has been one motivation for the development of concurrent garbage
collectors [BCRO3]. Furthermore, although we need all pre-existing readers
to complete, we do not need them all to complete at the same time.

This observation leads to the sixth approach, which is stopping one CPU
or thread at a time. This approach has the advantage of not degrading reader
response times at all, let alone gravely. Furthermore, numerous applications
already have states (termed quiescent states) that can be reached only after
all pre-existing readers are done. In transaction-processing systems, the
time between a pair of successive transactions might be a quiescent state.
In reactive systems, the state between a pair of successive events might
be a quiescent state. Within non-preemptive operating-systems kernels, a

6 The program that forces the periodic crashing is sometimes known as a “chaos monkey”:
https://netflix.github.io/chaosmonkey/. However, it might also be a mistake to
neglect chaos caused by systems running for too long.

https://netflix.github.io/chaosmonkey/

322

context switch can be a quiescent state [MS98a]. Either way, once all CPUs
and/or threads have passed through a quiescent state, the system is said to
have completed a grace period, at which point all readers in existence at the
start of that grace period are guaranteed to have completed. As a result, it is
also guaranteed to be safe to free any removed data items that were removed
prior to the start of that grace period.’

Within a non-preemptive operating-system kernel, for context switch to
be a valid quiescent state, readers must be prohibited from blocking while
referencing a given instance data structure obtained via the gptr pointer
shown in Figures 9.6 and 9.7. This no-blocking constraint is consistent
with similar constraints on pure spinlocks, where a CPU is forbidden from
blocking while holding a spinlock. Without this constraint, all CPUs might
be consumed by threads spinning attempting to acquire a spinlock held by a
blocked thread. The spinning threads will not relinquish their CPUs until
they acquire the lock, but the thread holding the lock cannot possibly release
it until one of the spinning threads relinquishes a CPU. This is a classic
deadlock situation, and this deadlock is avoided by forbidding blocking
while holding a spinlock.

Again, this same constraint is imposed on reader threads dereferencing
gptr: Such threads are not allowed to block until after they are done using
the pointed-to data item. Returning to the second row of Figure 9.7, where the
updater has just completed executing the smp_store_release (), imagine
that CPU 0 executes a context switch. Because readers are not permitted to
block while traversing the linked list, we are guaranteed that all prior readers
that might have been running on CPU 0 will have completed. Extending
this line of reasoning to the other CPUs, once each CPU has been observed
executing a context switch, we are guaranteed that all prior readers have
completed, and that there are no longer any reader threads referencing the
newly removed data element. The updater can then safely free that data
element, resulting in the state shown at the bottom of Figure 9.7.

This approach is termed quiescent-state-based reclamation
(QSBR) [HMBO06]. A QSBR schematic is shown in Figure 9.8,

7 Tt is possible to do much more with RCU than simply defer reclamation of memory, but
deferred reclamation is RCU’s most common use case, and is therefore an excellent place to
start.

323

(gptr, NULL);

CPU1 CPU 2 CPU 3

8) Context Switch

/

Reader

synchronize_rcu()
WRITE_ONCE

Grace Period /
~

Figure 9.8: QSBR: Waiting for Pre-Existing Readers

v2022.09.25ba

324

with time advancing from the top of the figure to the bottom. The
cyan-colored boxes depict RCU read-side critical sections, each of which
begins with rcu_read_lock() and ends with rcu_read_unlock().
CPU 1 does the WRITE_ONCE() that removes the current data item
(presumably having previously read the pointer value and availed itself of
appropriate synchronization), then waits for readers. This wait operation
results in an immediate context switch, which is a quiescent state (denoted
by the pink circle), which in turn means that all prior reads on CPU 1 have
completed. Next, CPU 2 does a context switch, so that all readers on CPUs 1
and 2 are now known to have completed. Finally, CPU 3 does a context
switch. At this point, all readers throughout the entire system are known to
have completed, so the grace period ends, permitting synchronize_rcu()
to return to its caller, in turn permitting CPU 1 to free the old data item.

Quick Quiz 9.25: In Figure 9.8, the last of CPU 3’s readers that could possibly
have access to the old data item ended before the grace period even started! So
why would anyone bother waiting until CPU 3’s later context switch??? H

9.5.1.4 Toy Implementation

Although production-quality QSBR implementations can be quite complex,
a toy non-preemptive Linux-kernel implementation is exceedingly simple:

1 | void synchronize_rcu(void)

2| {

3 int cpu;

4

5 for_each_online_cpu(cpu)

6 sched_setaffinity(current->pid, cpumask_of(cpu));
70}

The for_each_online_cpu() primitive iterates over all CPUs, and the
sched_setaffinity () function causes the current thread to execute on
the specified CPU, which forces the destination CPU to execute a context
switch. Therefore, once the for_each_online_cpu() has completed,
each CPU has executed a context switch, which in turn guarantees that all
pre-existing reader threads have completed.

)

9

Listing 9.13: Insertion and Deletion With Concurrent Readers

1
2
3
4
5

struct route *gptr;

int access_route(int (*f)(struct route *rp))

{

}

int ret = -1;
struct route *rp;

rcu_read_lock();
rp = rcu_dereference(gptr);
if (rp)

ret = f(rp);
rcu_read_unlock();
return ret;

struct route *ins_route(struct route *rp)

{

}

struct route *old_rp;

spin_lock(&route_lock) ;
old_rp = gptr;
rcu_assign_pointer(gptr, rp);
spin_unlock(&route_lock);
return old_rp;

int del_route(void)

{

struct route *old_rp;

spin_lock(&route_lock) ;
old_rp = gptr;
RCU_INIT_POINTER(gptr, NULL);
spin_unlock(&route_lock);
synchronize_rcu();
free(old_rp);

return !'old_rp;

326

Please note that this approach is not production quality. Correct han-
dling of a number of corner cases and the need for a number of powerful
optimizations mean that production-quality implementations are quite com-
plex. In addition, RCU implementations for preemptible environments
require that readers actually do something, which in non-real-time Linux-
kernel environments can be as simple as defining rcu_read_lock() and
rcu_read_unlock() as preempt_disable() and preempt_enable(),
respectively.® However, this simple non-preemptible approach is conceptu-
ally complete, and demonstrates that it really is possible to provide read-side
synchronization at zero cost, even in the face of concurrent updates. In
fact, Listing 9.13 shows how reading (access_route()), Figure 9.6’s
insertion (ins_route()) and Figure 9.7’s deletion (del_route()) can
be implemented. (A slightly more capable routing table is shown in
Section 9.5.4.1.)

Quick Quiz 9.26: What is the point of rcu_read_lock() and rcu_read_
unlock() in Listing 9.13? Why not just let the quiescent states speak for
themselves? W

Quick Quiz 9.27: What is the point of rcu_dereference(), rcu_assign_
pointer () and RCU_INIT_POINTER() in Listing 9.13? Why not just use
READ_ONCE(), smp_store_release(), and WRITE_ONCE(), respectively? H

Referring back to Listing 9.13, note that route_lock is used to syn-
chronize between concurrent updaters invoking ins_route() and del_
route (). However, this lock is not acquired by readers invoking access_
route(): Readers are instead protected by the QSBR techniques described
in this section.

Note that ins_route () simply returns the old value of gptr, which
Figure 9.6 assumed would always be NULL. This means that it is the
caller’s responsibility to figure out what to do with a non-NULL value, a
task complicated by the fact that readers might still be referencing it for
an indeterminate period of time. Callers might use one of the following
approaches:

8 Some toy RCU implementations that handle preempted read-side critical sections are
shown in Appendix B.

327

1. Use synchronize_rcu() to safely free the pointed-to structure. Al-
though this approach is correct from an RCU perspective, it arguably
has software-engineering leaky-API problems.

2. Trip an assertion if the returned pointer is non-NULL.

3. Pass the returned pointer to a later invocation of ins_route() to
restore the earlier value.

In contrast, del_route() uses synchronize_rcu() and free() to
safely free the newly deleted data item.

Quick Quiz 9.28: But what if the old structure needs to be freed, but the caller
of ins_route () cannot block, perhaps due to performance considerations or
perhaps because the caller is executing within an RCU read-side critical section?

This example shows one general approach to reading and updating RCU-
protected data structures, however, there is quite a variety of use cases,
several of which are covered in Section 9.5.4.

In summary, it is in fact possible to create concurrent linked data structures
that can be traversed by readers executing the same sequence of machine
instructions that would be executed by single-threaded readers. The next
section summarizes RCU’s high-level properties.

9.5.1.5 RCU Properties

A key RCU property is that reads need not wait for updates. This property
enables RCU implementations to provide low-cost or even no-cost readers,
resulting in low overhead and excellent scalability. This property also allows
RCU readers and updaters to make useful concurrent forward progress.
In contrast, conventional synchronization primitives must enforce strict
mutual exclusion using expensive instructions, thus increasing overhead and
degrading scalability, but also typically prohibiting readers and updaters
from making useful concurrent forward progress.

Quick Quiz 9.29: Doesn’t Section 9.4’s seqlock also permit readers and updaters
to make useful concurrent forward progress? Wl

328

Asnoted earlier, RCU delimits readers with rcu_read_lock() andrcu_
read_unlock (), and ensures that each reader has a coherent view of each
object (see Figure 9.7) by maintaining multiple versions of objects and using
update-side primitives such as synchronize_rcu() to ensure that objects
are not freed until after the completion of all readers that might be using
them. RCU uses rcu_assign_pointer () and rcu_dereference() to
provide efficient and scalable mechanisms for publishing and reading new
versions of an object, respectively. These mechanisms distribute the work
among read and update paths in such a way as to make read paths extremely
fast, using replication and weakening optimizations in a manner similar to
hazard pointers, but without the need for read-side retries. In some cases,
including CONFIG_PREEMPT=n Linux kernels, RCU’s read-side primitives
have zero overhead.

But are these properties actually useful in practice? This question is taken
up by the next section.

9.5.1.6 Practical Applicability

RCU has been used in the Linux kernel since October 2002 [Tor02]. Use
of the RCU API has increased substantially since that time, as can be seen
in Figure 9.9. In fact, code very similar to that in Listing 9.13 is used in
the Linux kernel. RCU has enjoyed heavy use both prior to and since its
acceptance in the Linux kernel, as discussed in Section 9.5.5.

It is therefore safe to say that RCU enjoys wide practical applicability.

The minimal example discussed in this section is a good introduction to
RCU. However, effective use of RCU often requires that you think differently
about your problem. It is therefore useful to examine RCU’s fundamentals,
a task taken up by the following section.

9.5.2 RCU Fundamentals

This section re-examines the ground covered in the previous section, but
independent of any particular example or use case. People who prefer to
live their lives very close to the actual code may wish to skip the underlying
fundamentals presented in this section.

329

16000

14000 |-
» 12000 |-
3
3 10000 |-
S 8000 |
o
O 6000 |-
¥ 4000 |-
2000 |-
0 | | | | | | |
Al <t [{eo} [e0] o (qV] < (e} 0] o
o o o o ~— ~— ~— ~— ~— Al
o o o o o o o o o o
Al Al Al Al Al (V] Al (V] (V] (V]
Year

Figure 9.9: RCU Usage in the Linux Kernel

RCU is made up of three fundamental mechanisms, the first being
used for insertion, the second being used for deletion, and the third being
used to allow readers to tolerate concurrent insertions and deletions. Sec-
tion 9.5.2.1 describes the publish-subscribe mechanism used for insertion,
Section 9.5.2.2 describes how waiting for pre-existing RCU readers enabled
deletion, and Section 9.5.2.3 discusses how maintaining multiple versions
of recently updated objects permits concurrent insertions and deletions.
Finally, Section 9.5.2.4 summarizes RCU fundamentals.

9.5.2.1 Publish-Subscribe Mechanism

Because RCU readers are not excluded by RCU updaters, an RCU-protected
data structure might change while a reader accesses it. The accessed data
item might be moved, removed, or replaced. Because the data structure
does not “hold still” for the reader, each reader’s access can be thought of as

330

ins_route() access_route()

L L S

Figure 9.10: Publication/Subscription Constraints

subscribing to the current version of the RCU-protected data item. For their
part, updaters can be thought of as publishing new versions.

Unfortunately, as laid out in Section 4.3.4.1 and reiterated in Sec-
tion 9.5.1.1, it is unwise to use plain accesses for these publication and
subscription operations. It is instead necessary to inform both the compiler
and the CPU of the need for care, as can be seen from Figure 9.10, which
illustrates interactions between concurrent executions of ins_route () (and
its caller) and read_gptr () from Listing 9.13.

The ins_route () column from Figure 9.10 shows ins_route () ’s caller
allocating a new route structure, which then contains pre-initialization
garbage. The caller then initializes the newly allocated structure, and then
invokes ins_route() to publish a pointer to the new route structure.

v2022.09.25a

331

Publication does not affect the contents of the structure, which therefore
remain valid after publication.

The access_route() column from this same figure shows the pointer
being subscribed to and dereferenced. This dereference operation absolutely
must see a valid route structure rather than pre-initialization garbage
because referencing garbage could result in memory corruption, crashes,
and hangs. As noted earlier, avoiding such garbage means that the publish
and subscribe operations must inform both the compiler and the CPU of the
need to maintain the needed ordering.

Publication is carried out by rcu_assign_pointer (), which ensures
that ins_route()’s caller’s initialization is ordered before the actual
publication operation’s store of the pointer. In addition, rcu_assign_
pointer () must be atomic in the sense that concurrent readers see either
the old value of the pointer or the new value of the pointer, but not some
mash-up of these two values. These requirements are met by the C11 store-
release operation, and in fact in the Linux kernel, rcu_assign_pointer ()
is defined in terms of smp_store_release (), which is similar to C11
store-release.

Note that if concurrent updates are required, some sort of synchronization
mechanism will be required to mediate among multiple concurrent rcu_
assign_pointer () calls on the same pointer. In the Linux kernel, locking
is the mechanism of choice, but pretty much any synchronization mechanism
may be used. An example of a particularly lightweight synchronization
mechanism is Chapter 8’s data ownership: If each pointer is owned by a
particular thread, then that thread may execute rcu_assign_pointer ()
on that pointer with no additional synchronization overhead.

Quick Quiz 9.30: Wouldn’t use of data ownership for RCU updaters mean that
the updates could use exactly the same sequence of instructions as would the
corresponding single-threaded code? W

Subscription is carried out by rcu_dereference(), which orders
the subscription operation’s load from the pointer is before the derefer-
ence. Similar to rcu_assign_pointer(), rcu_dereference() must
be atomic in the sense that the value loaded must be that from a sin-

332

gle store, for example, the compiler must not tear the load.” Unfortu-
nately, compiler support for rcu_dereference() is at best a work in
progress [MWB*17, MRP*17, BM18]. In the meantime, the Linux kernel
relies on volatile loads, the details of the various CPU architectures, coding
restrictions [McK14e], and, on DEC Alpha [Cor02], a memory-barrier in-
struction. However, on other architectures, rcu_dereference () typically
emits a single load instruction, just as would the equivalent single-threaded
code. The coding restrictions are described in more detail in Section 15.3.2,
however, the common case of field selection (“~>") works quite well.
Software that does not require the ultimate in read-side performance can
instead use C11 acquire loads, which provide the needed ordering and
more, albeit at a cost. It is hoped that lighter-weight compiler support for
rcu_dereference () will appear in due course.

In short, use of rcu_assign_pointer () for publishing pointers and
use of rcu_dereference () for subscribing to them successfully avoids
the “Not OK” garbage loads depicted in Figure 9.10. These two primitives
can therefore be used to add new data to linked structures without disrupting
concurrent readers.

Quick Quiz 9.31: But suppose that updaters are adding and removing multiple
data items from a linked list while a reader is iterating over that same list.
Specifically, suppose that a list initially contains elements A, B, and C, and that
an updater removes element A and then adds a new element D at the end of the
list. The reader might well see {A, B, C, D}, when that sequence of elements
never actually ever existed! In what alternate universe would that qualify as “not
disrupting concurrent readers”??? W

Adding data to a linked structure without disrupting readers is a good
thing, as are the cases where this can be done with no added read-side cost
compared to single-threaded readers. However, in most cases it is also
necessary to remove data, and this is the subject of the next section.

9 That is, the compiler must not break the load into multiple smaller loads, as described
under “load tearing” in Section 4.3.4.1.

9.5.2.2 Wait For Pre-Existing RCU Readers

In its most basic form, RCU is a way of waiting for things to finish. Of
course, there are a great many other ways of waiting for things to finish,
including reference counts, reader-writer locks, events, and so on. The great
advantage of RCU is that it can wait for each of (say) 20,000 different things
without having to explicitly track each and every one of them, and without
having to worry about the performance degradation, scalability limitations,
complex deadlock scenarios, and memory-leak hazards that are inherent in
schemes using explicit tracking.

In RCU’s case, each of the things waited on is called an RCU read-side
critical section. As noted in Table 9.1, an RCU read-side critical section
starts with an rcu_read_lock() primitive, and ends with a corresponding
rcu_read_unlock() primitive. RCU read-side critical sections can be
nested, and may contain pretty much any code, as long as that code does
not contain a quiescent state. For example, within the Linux kernel, it is
illegal to sleep within an RCU read-side critical section because a context
switch is a quiescent state.!” If you abide by these conventions, you can
use RCU to wait for any pre-existing RCU read-side critical section to
complete, and synchronize_rcu() uses indirect means to do the actual
waiting [DMS*12, McK13].

The relationship between an RCU read-side critical section and a later
RCU grace period is an if-then relationship, as illustrated by Figure 9.11. If
any portion of a given critical section precedes the beginning of a given grace
period, then RCU guarantees that all of that critical section will precede
the end of that grace period. In the figure, PO()’s access to x precedes
P1()’s access to this same variable, and thus also precedes the grace period
generated by P1 () ’s call to synchronize_rcu(). Itis therefore guaranteed
that PO()’s access to y will precede P1 () ’s access. In this case, if r1’s final
value is 0, then r2’s final value is guaranteed to also be 0.

Quick Quiz 9.32: What other final values of r1 and r2 are possible in Figure 9.11?
|

10 However, a special form of RCU called SRCU [McK06] does permit general sleeping in
SRCU read-side critical sections.

PO()

P1()
Figure 9.11: RCU Reader and Later Grace Period

v2022.09.25a

334

T
330

x=1;
PO() Y
=)
rcu_read_lock() = synchronize_rcu()
S
<]
Y 2 Y
1 =x; ... RCU guarantees y=1;
| /
r2=y; Given this ordering ...
|

rcu_read_unlock()

Figure 9.12: RCU Reader and Earlier Grace Period

The relationship between an RCU read-side critical section and an earlier
RCU grace period is also an if-then relationship, as illustrated by Figure 9.12.
If any portion of a given critical section follows the end of a given grace
period, then RCU guarantees that all of that critical section will follow
the beginning of that grace period. In the figure, PO()’s access to y
follows P1()’s access to this same variable, and thus follows the grace
period generated by P1()’s call to synchronize_rcu(). It is therefore
guaranteed that PO()’s access to x will follow P1()’s access. In this case,
if r2’s final value is 1, then r1’s final value is guaranteed to also be 1.

Quick Quiz 9.33: What would happen if the order of PO()’s two accesses was
reversed in Figure 9.12? W

Finally, as shown in Figure 9.13, an RCU read-side critical section can
be completely overlapped by an RCU grace period. In this case, r1’s final
value is 1 and r2’s final value is 0.

P1()

Figure 9.13: RCU Reader Within Grace Period

v2022.09.25a

336

337

Howeyver, it cannot be the case that r1’s final value is 0 and r2’s final
value is 1. This would mean that an RCU read-side critical section had
completely overlapped a grace period, which is forbidden (or at the very
least constitutes a bug in RCU). RCU’s wait-for-readers guarantee therefore
has two parts: (1) If any part of a given RCU read-side critical section
precedes the beginning of a given grace period, then the entirety of that
critical section precedes the end of that grace period. (2) If any part of
a given RCU read-side critical section follows the end of a given grace
period, then the entirety of that critical section follows the beginning of
that grace period. This definition is sufficient for almost all RCU-based
algorithms, but for those wanting more, simple executable formal models
of RCU are available as part of Linux kernel v4.17 and later, as discussed
in Section 12.3.2. In addition, RCU’s ordering properties are examined in
much greater detail in Section 15.4.3.

Quick Quiz 9.34: What would happen if PO () ’s accesses in Figures 9.11-9.13
were stores? W

Although RCU