61 HiTEX INTRODUCTION 3

March 12, 2025 at 15:40

1. Introduction. This is HiTgX, a program derived from TEX, extending its capabilities using e-TEX
and PRAI'E, and adding functions common to other engines from the TEX Live distribution. HiTEX writes
output files in the HINT file format. Like TEX, it is a document compiler intended to produce typesetting of
high quality. The Pascal program that follows is the definition of TEX82, a standard version of TEX that is
designed to be highly portable so that identical output will be obtainable on a great variety of computers.

The main purpose of the following program is to explain the algorithms of TEX as clearly as possible. As
a result, the program will not necessarily be very efficient when a particular Pascal compiler has translated
it into a particular machine language. However, the program has been written so that it can be tuned to run
efficiently in a wide variety of operating environments by making comparatively few changes. Such flexibility
is possible because the documentation that follows is written in the WEB language, which is at a higher level
than Pascal; the preprocessing step that converts WEB to Pascal is able to introduce most of the necessary
refinements. Semi-automatic translation to other languages is also feasible, because the program below does
not make extensive use of features that are peculiar to Pascal.

A large piece of software like TEX has inherent complexity that cannot be reduced below a certain level of
difficulty, although each individual part is fairly simple by itself. The WEB language is intended to make the
algorithms as readable as possible, by reflecting the way the individual program pieces fit together and by
providing the cross-references that connect different parts. Detailed comments about what is going on, and
about why things were done in certain ways, have been liberally sprinkled throughout the program. These
comments explain features of the implementation, but they rarely attempt to explain the TEX language
itself, since the reader is supposed to be familiar with The TEXbook.

4 INTRODUCTION HiTEX ~ §2

2. The present implementation has a long ancestry, beginning in the summer of 1977, when Michael F.
Plass and Frank M. Liang designed and coded a prototype based on some specifications that the author
(in the following, unless specified, “the author” refers to D.E. Knuth) had made in May of that year. This
original protoTEX included macro definitions and elementary manipulations on boxes and glue, but it did
not have line-breaking, page-breaking, mathematical formulas, alignment routines, error recovery, or the
present semantic nest; furthermore, it used character lists instead of token lists, so that a control sequence
like \halign was represented by a list of seven characters. A complete version of TEX was designed and
coded by the author in late 1977 and early 1978; that program, like its prototype, was written in the SAIL
language, for which an excellent debugging system was available. Preliminary plans to convert the SAIL
code into a form somewhat like the present “web” were developed by Luis Trabb Pardo and the author at
the beginning of 1979, and a complete implementation was created by Ignacio A. Zabala in 1979 and 1980.
The TEX82 program, which was written by the author during the latter part of 1981 and the early part of
1982, also incorporates ideas from the 1979 implementation of TEX in MESA that was written by Leonidas
Guibas, Robert Sedgewick, and Douglas Wyatt at the Xerox Palo Alto Research Center. Several hundred
refinements were introduced into TEX82 based on the experiences gained with the original implementations,
so that essentially every part of the system has been substantially improved. After the appearance of
“Version 0” in September 1982, this program benefited greatly from the comments of many other people,
notably David R. Fuchs and Howard W. Trickey. A final revision in September 1989 extended the input
character set to eight-bit codes and introduced the ability to hyphenate words from different languages,
based on some ideas of Michael J. Ferguson.

No doubt there still is plenty of room for improvement, but the author is firmly committed to keeping
TEX82 “frozen” from now on; stability and reliability are to be its main virtues.

On the other hand, the WEB description can be extended without changing the core of TEX82 itself, and
the program has been designed so that such extensions are not extremely difficult to make. The banner
string defined here should be changed whenever TEX undergoes any modifications, so that it will be clear
which version of TEX might be the guilty party when a problem arises.

This program contains code for various features extending TEX, therefore this program is called ‘PRII'E’
and not ‘TEX’; the official name ‘TEX’ by itself is reserved for software systems that are fully compatible
with each other. A special test suite called the “TRIP test” is available for helping to determine whether
a particular implementation deserves to be known as ‘TEX’ [cf. Stanford Computer Science report CS1027,
November 1984].

A similar test suite called the “SELLETTE test” is available for helping to determine whether a particular
implementation deserves to be known as ‘PRII'E’.

#define eTeX_version 2 > \eTeXversion <«

#define eTeX_revision ".6" > \eTeXrevision <

#define eTeX_version_string "-2.6" >current e-TEX version <

#define TeX_banner "This is_ TeX, Version,,3.141592653" > printed when TEX starts <
#define TEX ETEX >change program name into ETEX «

#define eTeX_states 1 > number of e-TEX state variables in eqth <

#define Prote_version_string "3.141592653-2.6-1.1.0" > current PROTE version <

#define Prote_version 1 > \Proteversion <«
#define Prote_revision ".1.0" > \Proterevision <«

#define Prote_banner "This_is_Prote, Version, " Prote_version_string
> printed when PRIT'E starts <

#define banner "This is HiTeX, Version,3.141592653"
eTeX_version_string"-"HINT_VERSION_STRING" "TL_VERSION > printed when TEX starts<

63 HiTEX INTRODUCTION 5

3. Different Pascals have slightly different conventions, and the present program expresses TEX in terms
of the Pascal that was available to the author in 1982. Constructions that apply to this particular compiler,
which we shall call Pascal-H, should help the reader see how to make an appropriate interface for other
systems if necessary. (Pascal-H is Charles Hedrick’s modification of a compiler for the DECsystem-10 that
was originally developed at the University of Hamburg; cf. Software—Practice and Experience 6 (1976), 29—
42. The TEX program below is intended to be adaptable, without extensive changes, to most other versions
of Pascal, so it does not fully use the admirable features of Pascal-H. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard Pascal itself, so that most of the code
can be translated mechanically into other high-level languages. For example, the ‘with’ and ‘new’ features
are not used, nor are pointer types, set types, or enumerated scalar types; there are no ‘var’ parameters,
except in the case of files — e-TEX, however, does use ‘var’ parameters for the reverse function; there are
no tag fields on variant records; there are no assignments double <+ int; no procedures are declared local
to other procedures.)

The portions of this program that involve system-dependent code, where changes might be necessary
because of differences between Pascal compilers and/or differences between operating systems, can be
identified by looking at the sections whose numbers are listed under ‘system dependencies’ in the index.
Furthermore, the index entries for ‘dirty Pascal’ list all places where the restrictions of Pascal have not been
followed perfectly, for one reason or another.

Incidentally, Pascal’s standard round function can be problematical, because it disagrees with the IEEE
floating-point standard. Many implementors have therefore chosen to substitute their own home-grown
rounding procedure.

4. The following is an outline of the program, whose components will be filled in later, using the conventions
of cweb. For example, the portion of the program called ‘(Global variables 13)’ below will be replaced by a
sequence of variable declarations that starts in §13 of this documentation. In this way, we are able to define
each individual global variable when we are prepared to understand what it means; we do not have to define
all of the globals at once. Cross references in §13, where it says “See also sections 20, 26, ...,” also make it
possible to look at the set of all global variables, if desired. Similar remarks apply to the other portions of
the program.

The program starts with inserting header files and occassionaly a function must be placed before declaring
TEX’s macros, because the function uses identifiers that TEX will declare as macros.

(Header files and function declarations 9)
(Preprocessor definitions)

enum {
(Constants in the outer block 11)
empty_string <— 256 >the empty string follows after 256 characters«

Types in the outer block 18)
Forward declarations 52)
Global variables 13)

(Local variables for initialization 19)
(Initialize whatever TEX might access 8)

Basic printing procedures 56)

}
(
(
(
static void initialize (void) > this procedure gets things started properly <
{
}
(
(Error handling procedures 72)

6 INTRODUCTION HiTEX ~ §5

5. The overall TEX program begins with the heading just shown, after which comes a bunch of procedure
declarations and function declarations. Finally we will get to the main program, which begins with the
comment ‘start_here’. If you want to skip down to the main program now, you can look up ‘start_here’
in the index. But the author suggests that the best way to understand this program is to follow pretty
much the order of TEX’s components as they appear in the WEB description you are now reading, since the
present ordering is intended to combine the advantages of the “bottom up” and “top down” approaches to
the problem of understanding a somewhat complicated system.

6. There is no need to declare labels in C.

7. Some of the code below is intended to be used only when diagnosing the strange behavior that sometimes
occurs when TEX is being installed or when system wizards are fooling around with TEX without quite
knowing what they are doing. Such code will not normally be compiled; it is delimited by the codewords
‘#ifdef DEBUG ... #endif’, with apologies to people who wish to preserve the purity of English.

Similarly, there is some conditional code delimited by ‘#ifdef STAT ... #endif’ that is intended for use
when statistics are to be kept about TEX’s memory usage. The #ifdef STAT ... #endif code also implements
diagnostic information for \tracingparagraphs, \tracingpages, and \tracingrestores.

8. This program has two important variations: (1) There is a long and slow version called INITEX, which
does the extra calculations needed to initialize TEX’s internal tables; and (2) there is a shorter and faster
production version, which cuts the initialization to a bare minimum. Parts of the program that are needed
in (1) but not in (2) are delimited by the codewords ‘#ifdef INIT...#endif’.

TEX Live has established the common practice to select the initialization code at runtime using the
iniversion variable.

(Initialize whatever TEX might access 8) =

(Set initial values of key variables 21)
#ifdef INIT

if (iniversion) > TpX Live<

{ (Initialize table entries (done by INITEX only) 164) }
#endif

This code is used in section 4.

9. The declaration of all basic type definitions needed by HiTEX are contained in a system dependent
header file.

(Header files and function declarations 9) =

#include "hibasetypes.h"

#include <string.h>

#include <math.h>

See also sections 1693, 1874, 1886, 1924, and 1925.

This code is used in section 4.

10. Further it is necessary to define some build in primitives of Pascal that are otherwise not available
in C.

#define 0dd(X) ((X)&1)

#define chr(X) ((unsigned char)(X))
#define ord(X) ((unsigned int)(X))
#define abs(X) ((X) > —(X)?(X):—(X))

#define round(X) ((int)((X) > 0.0 ? floor ((X) + 0.5) : ceil ((X) — 0.5)))

611 HiTEX INTRODUCTION 7

11. The following parameters can be changed at compile time to extend or reduce TEX’s capacity. They
may have different values in INITEX and in production versions of TEX.

(Constants in the outer block 11) =

mem_maz < 5000000, > greatest index in TEX's internal mem array; must be strictly less than
mazx_halfword; must be equal to mem_top in INITEX, otherwise > mem_top <

mem_min < 0, >smallest index in TEX's internal mem array; must be min_halfword or more; must be
equal to mem_bot in INITEX, otherwise < mem_bot <

buf_size < 2000000, >maximum number of characters simultaneously present in current lines of open
files and in control sequences between \csname and \endcsname; must not exceed maz_halfword <

error_line < 79, >width of context lines on terminal error messages <

half_error_line < 50,
>width of first lines of contexts in terminal error messages; should be between 30 and error_line — 15«
mazx_print_line < 79, >width of longest text lines output; should be at least 60 <
stack_size < 5000, >maximum number of simultaneous input sources<
maz_in_open < 195,
>maximum number of input files and error insertions that can be going on simultaneously <
font_mazx < 255, >maximum internal font number; must not exceed maz_quarterword and must be at
most font_base + 256 <
font_mem_size < 8000000, >number of words of font_info for all fonts<
param_size <— 10000, > maximum number of simultaneous macro parameters <
nest_size <— 500, > maximum number of semantic levels simultaneously active <
mazx_strings < 500000, >maximum number of strings; must not exceed maz_halfword <
string_vacancies <— 90000, >the minimum number of characters that should be available for the user's
control sequences and font names, after TEX's own error messages are stored <
pool_size <— 6250000, >maximum number of characters in strings, including all error messages and help
texts, and the names of all fonts and control sequences; must exceed string_vacancies by the total
length of TEX's own strings, which is currently about 23000«
save_size < 100000, > space for saving values outside of current group; must be at most max_halfword <
trie_size < 1000000,
> space for hyphenation patterns; should be larger for INITEX than it is in production versions of TEX <

trie_op_size < 35111, >space for “opcodes” in the hyphenation patterns<
dvi_buf_size < 16384, > size of the output buffer; must be a multiple of 8«
file_name_size < 1024, > file names shouldn't be longer than this<
xchg_buffer_size < 64 , >must be at least 64 <

>size of eight_bits buffer for exchange with system routines <

This code is used in section 4.

8 INTRODUCTION HiTEX §12

12. Like the preceding parameters, the following quantities can be changed at compile time to extend or
reduce TEX’s capacity. But if they are changed, it is necessary to rerun the initialization program INITEX
to generate new tables for the production TEX program. One can’t simply make helter-skelter changes to
the following constants, since certain rather complex initialization numbers are computed from them. They
are defined here using WEB macros, instead of being put into the above enum list in order to emphasize this
distinction.

#define mem_bot 0
>smallest index in the mem array dumped by INITEX; must not be less than mem_min <
#define mem_top 5000000 > largest index in the mem array dumped by INITEX; must be substantially
larger than mem_bot and not greater than mem_max <
#define font_base 0 >smallest internal font number; must not be less than min_quarterword <
#define hash_size 45000 >maximum number of control sequences; it should be at most about
(mem_maz — mem_min)/(double) 10«
#define hash_prime 35999 >a prime number equal to about 85% of hash_size <
#define hyph_size 8191 >another prime; the number of \hyphenation exceptions<

13. In case somebody has inadvertently made bad settings of the “constants,” TEX checks them using a
global variable called bad.
This is the first of many sections of TEX where global variables are defined.

(Global variables 13) =
static int bad; >is some “constant” wrong? <
See also sections 20, 26, 30, 32, 39, 54, 73, 76, 79, 96, 104, 115, 116, 117, 118, 124, 165, 173, 181, 213, 246, 253, 256, 271, 286,
297, 301, 304, 305, 308, 309, 310, 333, 361, 382, 387, 388, 410, 438, 447, 480, 489, 493, 512, 513, 527, 532, 539, 549, 550,
555, 592, 595, 605, 616, 646, 647, 661, 684, 719, 724, 765, 770, 814, 821, 823, 825, 828, 833, 839, 847, 872, 892, 900, 905,
907, 921, 926, 943, 947, 950, 971, 980, 982, 989, 1032, 1074, 1266, 1281, 1299, 1305, 1331, 1342, 1345, 1384, 1392, 1434,
1457, 1498, 1500, 1519, 1530, 1531, 1539, 1543, 1567, 1582, 1635, 1646, 1647, 1672, 1678, 1719, 1876, 1882, 1903, and 1913.

This code is used in section 4.

14. Later on we will say ‘if (mem_maxz > maz_halfword) bad < 14’, or something similar. (We can’t do
that until maz_halfword has been defined.)

(Check the “constant” values for consistency 14) =
bad < 0;
if ((half_error_line < 30) V (half_error_line > error_line — 15)) bad <+ 1,
if (maz_print_line < 60) bad < 2;
if (dvi_buf_size % 8 # 0) bad + 3;
if (mem_bot + 1100 > mem_top) bad < 4;
if (hash_prime > hash_size) bad < 5;
if (maz_in_open > 128) bad <+ 6;
if (mem_top < 256 + 11) bad < 7; >we will want null_list > 255<
See also sections 111, 290, and 1249.

This code is used in section 1332.

15. Labels are given symbolic names by the following definitions, so that occasional goto statements will
be meaningful. We insert the label ‘end’ just before the ‘}’ of a procedure in which we have used the ‘goto
end’ statement defined below; the label ‘restart’ is occasionally used at the very beginning of a procedure;
and the label ‘reswitch’ is occasionally used just prior to a case statement in which some cases change
the conditions and we wish to branch to the newly applicable case. Loops that are set up with the loop
construction defined below are commonly exited by going to ‘done’ or to ‘found’ or to ‘not_found’, and they
are sometimes repeated by going to ‘resume’. If two or more parts of a subroutine start differently but end
up the same, the shared code may be gathered together at ‘common_ending’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

616 HiTEX INTRODUCTION 9

16. Here are some macros for common programming idioms.

#define incr(A) A+ A+1 >increase a variable by unity <

#define decr(A) A+ A-1 > decrease a variable by unity <

#define negate(A) A+ —A >change the sign of a variable<

#define loop while (true) > repeat over and over until a goto happens<
format loop else >WEB's loop acts like ‘while true do' <«

#define do_nothing >empty statement<

#define empty 0 >symbolic name for a null constant<

10 THE CHARACTER SET HiTEX ~ §17

17. The character set. In order to make TEX readily portable to a wide variety of computers, all of its
input text is converted to an internal eight-bit code that includes standard ASCII, the “American Standard
Code for Information Interchange.” This conversion is done immediately when each character is read in.
Conversely, characters are converted from ASCII to the user’s external representation just before they are
output to a text file.

Such an internal code is relevant to users of TEX primarily because it governs the positions of characters
in the fonts. For example, the character ‘A’ has ASCII code 65 = 0101, and when TEX typesets this letter
it specifies character number 65 in the current font. If that font actually has ‘A’ in a different position,
TEX doesn’t know what the real position is; the program that does the actual printing from TEX’s device-
independent files is responsible for converting from ASCII to a particular font encoding.

TEX’s internal code also defines the value of constants that begin with a reverse apostrophe; and it provides
an index to the \catcode, \mathcode, \uccode, \lccode, and \delcode tables.

18. Characters of text that have been converted to TEX’s internal form are said to be of type ASCII_code,
which is a subrange of the integers.

(Types in the outer block 18) =
typedef uint8_t ASCII_code; > eight-bit numbers <
See also sections 25, 38, 101, 109, 113, 150, 212, 269, 300, 548, 594, 920, 925, 1410, and 1640.

This code is used in section 4.

19. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 040 through 0176; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name unsigned char for the
characters in text files, even though there now are more than 64 such characters, while other Pascals consider
unsigned char to be a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.
#define text_char unsigned char >the data type of characters in text files«
#define first_text_char 0 >ordinal number of the smallest element of text_char <
#define last_text_char 255 >ordinal number of the largest element of text_char <«
(Local variables for initialization 19) =

int 7;
See also sections 163 and 927.

This code is used in section 4.

20. The TEX processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to Pascal’s ord and chr functions.
{ Global variables 13) +=

static ASCII_code zord[256]; >specifies conversion of input characters<
static text_char zchr[256]; >specifies conversion of output characters<

621 HiTEX THE CHARACTER SET 11

21. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize the standard part of the zchr array properly, without needing any system-dependent
changes. On the other hand, it is possible to implement TEX with less complete character sets, and in such
cases it will be necessary to change something here.

(Set initial values of key variables 21) =

N

xchr[°40] <= 20?5 xchr[P41] <= 2175 xchr[°42] <= > "7, xchr[®43] < *#°; xchr[°44] + *$7;

xchr[°45] « %5 wchr[°46] « *&’; zchr[°47] «+ **7;

zchr[°50] + ’(’; xchr[°51] = ?) 75 wchr[°52] + %75 xchr[°53] < *+7; zchr[°5)] + *,7;

xchr[°55] « 2= xchr[°56] « *.7; xchr[°57] «+ /7,

xchr[°60] < 207 xchr[°61] < *1°; xzchr[°62] < *27; xchr[°63] < ’3’; xzchr[°64] «+ *47;

xchr[°65] < °57; xchr[°66] < *6°; xchr[°67] < 77,

xchr[°70] + ’8’; xchr[°71] <= 2975 wchr[®72] < 7175 wchr[°73] < 737 wchr[®74] « *<’;

xchr[°75] « 2= xchr[°76] + >’ xchr[°77] + 77,

zchr[°100] + ’@’; xchr[°101] « *A’; xchr[°102] + ’B’; achr[°103] «+ ’C’; zchr[°104] + °D’;

xzchr[°105] <~ *E?; xchr[°106] < *F’; xchr[°107] < ’G’;

zchr[°110] + ’H’; xchr[°111] <= 175 xchr[°112] < *J’; xchr[°113] < ’K’; zchr[°114] « °L’;

xchr[°115] <~ *M?; xchr[°116] < *N’; xchr[°117] < °0°;

xchr[°120] < °P?; xchr[°121] « *Q’; zchr[°122] « *R’; zchr[°123] « *S°; xzchr[°12{] « *T’;

zchr[°125] «+ U5 xchr[®126] + *V?; achr[°127] + *W’;

xchr[°130] < *X?; xchr[®131] < *Y’; xchr[°132] < *Z°; xchr[°133] « > [7; xchr[°134] < *\\’;

xchr[°185] < *17; xchr[°136] < °>~7; xchr[°187] + *_;

zchr[°140] "’; zchr[°141] < a’; xchr[°142] < *b’; xchr[°143] < ’¢’; xchr[°144] « ’d’;

xchr[°145] < ’e’; xchr[°146] « *£°; zchr[°147] «+ ’g’;

zchr[°150] = *h?; xchr[°151] + i achr[°152] <+ *j°; xchr[°153] + °*k’; xchr[°154] + *1’;

zchr[°155] « 'm?; xchr[°156] < ’n’; achr[°157] < ’0’;

zchr[°160] + p’, xchr[°161] « °q’; xchr[°162] < ’r’; xchr[°163] < ’s’; xchr[°164] «+ ’t7;

xchr[°165] < *u’; xchr[®166] < *v’; xchr[°167] < *w’;

xchr[°170] < *x?; xchr[®171] < *y’; xchr[°172] <= 2z’ xchr[°173] « *{?; xchr[°174] < *1°;
[°]

zchr(°175] < *}?; xchr[°176

See also sections 23, 24, 74, 77, 80, 97, 166, 215, 254, 257, 272, 287, 383, 439, 481, 490, 551, 556, 593, 596, 606, 648, 662, 685,
771, 928, 990, 1033, 1267, 1282, 1300, 1343, 1435, 1501, 1520, and 1532.

This code is used in section 8.

22. Some of the ASCII codes without visible characters have been given symbolic names in this program
because they are used with a special meaning.

#define null_code °0 > ASCII code that might disappear<

#define carriage_return °15 >ASCII code used at end of line<
#define invalid_code °177 >ASCIl code that many systems prohibit in text files<

12 THE CHARACTER SET HiTEX §23

23. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in zchr[0 .. °37], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of xzchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘¢’ instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an zchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than 040. To get the
most “permissive” character set, change ’\,> on the right of these assignment statements to chr (7).

(Set initial values of key variables 21) +=
for (i < 0; ¢ <°87; i++) xchr[i] « chr(i); > TeX Live<
for (i < °177; ¢ <°377; i++) xchr[i] + chr(i); > TpX Live«

24. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in xchr. Note that if zchr[i] = zchr[j] where i < j < °177, the value of zord[zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 040 in case there
is a coincidence.

(Set initial values of key variables 21) +=
for (i « first_text_char; i < last_text_char; i++) zord[chr(i)] < invalid_code;
for (i « °200; ¢ < °377; i++) zord[zchr[i]] < i;
for (i < 0; i <°176; i++) zord[zchr(i]] « i;

625 HiTEX INPUT AND OUTPUT 13

25. Input and output. The bane of portability is the fact that different operating systems treat input
and output quite differently, perhaps because computer scientists have not given sufficient attention to this
problem. People have felt somehow that input and output are not part of “real” programming. Well, it is
true that some kinds of programming are more fun than others. With existing input/output conventions
being so diverse and so messy, the only sources of joy in such parts of the code are the rare occasions when
one can find a way to make the program a little less bad than it might have been. We have two choices,
either to attack I/O now and get it over with, or to postpone I/O until near the end. Neither prospect is
very attractive, so let’s get it over with.

The basic operations we need to do are (1) inputting and outputting of text, to or from a file or the user’s
terminal; (2) inputting and outputting of eight-bit bytes, to or from a file; (3) instructing the operating system
to initiate (“open”) or to terminate (“close”) input or output from a specified file; (4) testing whether the
end of an input file has been reached.

TEX needs to deal with two kinds of files. We shall use the term alpha_file for a file that contains textual
data, and the term byte_file for a file that contains eight-bit binary information. These two types turn out
to be the same on many computers, but sometimes there is a significant distinction, so we shall be careful
to distinguish between them. Standard protocols for transferring such files from computer to computer, via
high-speed networks, are now becoming available to more and more communities of users.

The program actually makes use also of a third kind of file, called a word_file, when dumping and
reloading base information for its own initialization. We shall define a word file later; but it will be possible
for us to specify simple operations on word files before they are defined.

(Types in the outer block 18) +=
typedef uint8_t eight_bits; > unsigned one-byte quantity <
typedef struct { FILE «f; text_char d; } alpha_file; > files that contain textual data<
typedef struct { FILE xf; eight_bits d; } byte_file; > files that contain binary data<

26. Most of what we need to do with respect to input and output can be handled by the I/O facilities
that are standard in Pascal, i.e., the routines called get, put, eof , and so on. But standard Pascal does not
allow file variables to be associated with file names that are determined at run time, so it cannot be used
to implement TEX; some sort of extension to Pascal’s ordinary reset and rewrite is crucial for our purposes.
We shall assume that name_of_file is a variable of an appropriate type such that the Pascal run-time system
being used to implement TEX can open a file whose external name is specified by name_of_file.

(Global variables 13) +=
static unsigned char name_of_file0[file_name_size+1] + {0}, xconst name_of_file + name_of_file0 —1;
>on some systems this may be a record variable <

static int name_length; > this many characters are actually relevant in name_of_file (the rest are blank) <

14 INPUT AND OUTPUT HiTpX 827

27. To open files, TEX used Pascal’s reset function. We use the kpathsearch library to implement new
functions in the section on TEX Live Integration. Here we give only the function prototypes.

TEX’s file-opening functions do not issue their own error messages if something goes wrong. If a file
identified by name_of_file cannot be found, or if such a file cannot be opened for some other reason (e.g.,
someone may already be trying to write the same file) TEX’s file-opening functions return false. This allows
TEX to undertake appropriate corrective action.

static FILE xopen_in(char xfilename, kpse_file_format_type ¢, const char xrwb); > TeX Live«

static bool a_open_in(alpha_file xf); >open a text file for input<

static bool b_open_in(byte_file xf); >open a binary file for input <

static bool w_open_in(word_file xf); >open a word file for input <

static FILE xopen_out(const char xfile_name, const char xfile_mode); > TeX Live«
static bool a_open_out(alpha_file *f); >open a text file for output <

static bool b_open_out(byte_file xf); >open a binary file for output<
#ifdef INIT

static bool w_open_out(word_file xf); >open a word file for output <
#endif

28. Files can be closed with the Pascal-H routine ‘pascal_close(f)’, which should be used when all input
or output with respect to f has been completed. This makes f available to be opened again, if desired; and
if f was used for output, the pascal_close operation makes the corresponding external file appear on the
user’s area, ready to be read.

These procedures should not generate error messages if a file is being closed before it has been successfully
opened.

static void a_close(alpha_file «f) > close a text file«
{ pascal_close((x[));
}

static void b_close(byte_file xf) >close a binary file
{ pascal_close((x[));

static void w_close(word_file xf) > close a word file <
{ pascal_close((xf));
}

29. Binary input and output are done with Pascal’s ordinary get and put procedures, so we don’t have to
make any other special arrangements for binary I/O. Text output is also easy to do with standard Pascal
routines. The treatment of text input is more difficult, however, because of the necessary translation to
ASCII_code values. TEX’s conventions should be efficient, and they should blend nicely with the user’s
operating environment.

30. Input from text files is read one line at a time, using a routine called input_in. This function is defined
in terms of global variables called buffer, first, and last that will be described in detail later; for now, it
suffices for us to know that buffer is an array of ASCII_code values, and that first and last are indices
into this array representing the beginning and ending of a line of text.

(Global variables 13) +=
static ASCII_code buffer|[buf_size +1]; >lines of characters being read <
static int first; >the first unused position in buffer <
static int last; >end of the line just input to buffer <
static int maz_buf_stack; > largest index used in buffer <

631 HiTEX INPUT AND OUTPUT 15

31. The input_In function brings the next line of input from the specified file into available positions of
the buffer array and returns the value true, unless the file has already been entirely read, in which case it
returns false and sets last < first. In general, the ASCII_code numbers that represent the next line of
the file are input into buffer[first], buffer[first + 1], ..., buffer[last — 1]; and the global variable last is set
equal to first plus the length of the line. Trailing blanks are removed from the line; thus, either last = first
(in which case the line was entirely blank) or buffer[last — 1] # *.,°.

An overflow error is given, however, if the normal actions of input_In would make last > buf_size; this is
done so that other parts of TEX can safely look at the contents of buffer[last + 1] without overstepping the
bounds of the buffer array. Upon entry to input_In, the condition first < buf_size will always hold, so that
there is always room for an “empty” line.

The variable maz_buf_stack, which is used to keep track of how large the buf_size parameter must be to
accommodate the present job, is also kept up to date by input_In.

If the bypass_eoln parameter is true, input_In will do a get before looking at the first character of the
line; this skips over an eoln that was in f.d. The procedure does not do a get when it reaches the end of the
line; therefore it can be used to acquire input from the user’s terminal as well as from ordinary text files.

Standard Pascal says that a file should have eoln immediately before eof, but TEX needs only a weaker
restriction: If eof occurs in the middle of a line, the system function eoln should return a true result (even
though f.d will be undefined).

Since the inner loop of input_Iin is part of TEX’s “inner loop”—each character of input comes in at this
place—it is wise to reduce system overhead by making use of special routines that read in an entire array of
characters at once, if such routines are available. The following code uses standard Pascal to illustrate what
needs to be done, but finer tuning is often possible at well-developed Pascal sites.

static bool input_In(alpha_file f, bool bypass_eoln) > inputs the next line or returns false <
{ int last_nonblank; > last with trailing blanks removed <

if (bypass_eoln)

if (—eof ((xf))) get((xf)); >input the first character of the line into f.d<
last + first; >cf. Matthew 19:30<«
if (eof ((*f))) return false;
else { last_nonblank « first;

while (—eoln((xf))) { if (last > maz_buf_stack) { maz_buf_stack <+ last + 1;

if (maz_buf_stack = buf_size) (Report overflow of the input buffer, and abort 35);
}

buffer[last] < zord[(xf).d]; get((x[)); incr(last);
if (buffer[last — 1] # *’) last_nonblank + last;
}
last < last_nonblank; return true;
}
}

32. The user’s terminal acts essentially like other files of text, except that it is used both for input and
for output. When the terminal is considered an input file, the file variable is called term_in, and when it is
considered an output file the file variable is term_out.
(Global variables 13) +=

static alpha_file term_in; >the terminal as an input file<

static alpha_file term_out; >the terminal as an output file<

33. Here is how to open the terminal files in Pascal-H. The /I’ switch suppresses the first get.

#define t_open_in term_in.f < stdin >open the terminal for text input <
#define t_open_out term_out.f < stdout >open the terminal for text output<

16 INPUT AND OUTPUT HiTEX 6§34

34. Sometimes it is necessary to synchronize the input/output mixture that happens on the user’s terminal,
and three system-dependent procedures are used for this purpose. The first of these, update_terminal, is
called when we want to make sure that everything we have output to the terminal so far has actually left the
computer’s internal buffers and been sent. The second, clear_terminal, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to issue an unexpected error message). The
third, wake_up_terminal, is supposed to revive the terminal if the user has disabled it by some instruction
to the operating system. The following macros show how these operations can be specified in Pascal-H:

#define update_terminal [flush(term_out.f) >empty the terminal output buffer<
#define clear_terminal fflush(term_in.f) > clear the terminal input buffer<
#define wake_up_terminal do_nothing > cancel the user’'s cancellation of output<

35. We need a special routine to read the first line of TEX input from the user’s terminal. This line is
different because it is read before we have opened the transcript file; there is sort of a “chicken and egg”
problem here. If the user types ‘\input paper’ on the first line, or if some macro invoked by that line does
such an \input, the transcript file will be named ‘paper.log’; but if no \input commands are performed
during the first line of terminal input, the transcript file will acquire its default name ‘texput.log’. (The
transcript file will not contain error messages generated by the first line before the first \input command.)

The first line is even more special if we are lucky enough to have an operating system that treats TEX
differently from a run-of-the-mill Pascal object program. It’s nice to let the user start running a TEX job by
typing a command line like ‘tex paper’; in such a case, TEX will operate as if the first line of input were
‘paper’, i.e., the first line will consist of the remainder of the command line, after the part that invoked TEX.

The first line is special also because it may be read before TEX has input a format file. In such cases,
normal error messages cannot yet be given. The following code uses concepts that will be explained later.
(If the Pascal compiler does not support non-local goto, the statement ‘goto ezit(0)’ should be replaced by
something that quietly terminates the program.)

(Report overflow of the input buffer, and abort 35) =
if (format_ident = 0) { write_In(term_out, "Buffer size exceeded!"); exit(0);

else { cur_input.loc_field « first; cur_input.limit_field < last —1; overflow ("buffer size", buf_size);

}

This code is used in sections 31, 1440, and 1917.

36. Different systems have different ways to get started. But regardless of what conventions are adopted,
the routine that initializes the terminal should satisfy the following specifications:

1) It should open file term_in for input from the terminal. (The file term_out will already be open for
output to the terminal.)

2) If the user has given a command line, this line should be considered the first line of terminal input.
Otherwise the user should be prompted with ‘**’ and the first line of input should be whatever is
typed in response.

3) The first line of input, which might or might not be a command line, should appear in locations first
to last — 1 of the buffer array.

4) The global variable loc should be set so that the character to be read next by TEX is in buffer|loc].
This character should not be blank, and we should have loc < last.

(It may be necessary to prompt the user several times before a non-blank line comes in. The prompt is ‘**’
instead of the later ‘*’ because the meaning is slightly different: ‘\input’ need not be typed immediately
after ‘**’.)

#define loc cur_input.loc_field > location of first unread character in buffer <

637 HiTEX INPUT AND OUTPUT

37. The following routine calls input_command_line to retrieve a possible command line.

static bool init_terminal(void) > gets the terminal input started <
{ t_open_in;
if (input_command_line()) return true; > TpX Live <
loop { wake_up_terminal; pascal_write(term_out,"**"); update_terminal;
if (—input_In(&term_in, true)) >this shouldn't happen <
{ write_In(term_out); pascal_write(term_out," ! End of_ file on the terminal..._why?");
return false;

}

loc + first;
while ((loc < last) A (buffer[loc] = *.?)) incr(loc);
if (loc < last) { return true; >return unless the line was all blank <

write_In (term_ out, "Please type the name of jyour input, file.") ;

17

18 STRING HANDLING HiTEX ~ §38

38. String handling. Control sequence names and diagnostic messages are variable-length strings of
eight-bit characters. Since Pascal does not have a well-developed string mechanism, TEX does all of its string
processing by homegrown methods.

Elaborate facilities for dynamic strings are not needed, so all of the necessary operations can be handled
with a simple data structure. The array str_pool contains all of the (eight-bit) ASCII codes in all of the
strings, and the array str_start contains indices of the starting points of each string. Strings are referred
to by integer numbers, so that string number s comprises the characters str_pool[j] for str_start[s] < j <
str_start[s 4+ 1]. Additional integer variables pool_ptr and str_ptr indicate the number of entries used so far
in str_pool and str_start, respectively; locations str_pool[pool_ptr| and str_start[str_ptr] are ready for the
next string to be allocated.

String numbers 0 to 255 are reserved for strings that correspond to single ASCII characters. This is in
accordance with the conventions of WEB, which converts single-character strings into the ASCII code number
of the single character involved, while it converts other strings into integers and builds a string pool file.
Thus, when the string constant "." appears in the program below, WEB converts it into the integer 46,
which is the ASCII code for a period, while WEB will convert a string like "hello" into some integer greater
than 255. String number 46 will presumably be the single character ‘.’; but some ASCII codes have no
standard visible representation, and TEX sometimes needs to be able to print an arbitrary ASCII character,
so the first 256 strings are used to specify exactly what should be printed for each of the 256 possibilities.

Elements of the str_pool array must be ASCII codes that can actually be printed; i.e., they must have an
xchr equivalent in the local character set. (This restriction applies only to preloaded strings, not to those
generated dynamically by the user.)

Some Pascal compilers won’t pack integers into a single byte unless the integers lie in the range —128 .. 127.
To accommodate such systems we access the string pool only via macros that can easily be redefined.

#define si(A) A >convert from ASCII_code to packed_ASCII_code <
#define so(A) A >convert from packed_ASCII_code to ASCII_code <

(Types in the outer block 18) +=
typedef int32_t pool_pointer; > for variables that point into str_pool <
typedef int32_t str_number; > for variables that point into str_start <
typedef uint8_t packed_ASCII_code; >elements of str_pool array <

39. (Global variables 13) +=
static packed_ASCII_code str_pool|pool_size +1]; >the characters«
static pool_pointer str_start[maz_strings + 1]; >the starting pointers<
static pool_pointer pool_ptr; > first unused position in str_pool <
static str_number str_ptr; >number of the current string being created <
static pool_pointer init_pool_ptr; >the starting value of pool_ptr <
static str_number init_str_ptr; >the starting value of str_ptr <

40. Several of the elementary string operations are performed using WEB macros instead of Pascal pro-
cedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

#define length(A) (str_start[A 4+ 1] — str_start[A]) >the number of characters in string number # <

41. The length of the current string is called cur_length:
#define cur_length (pool_ptr — str_start[str_ptr])

642 HiTEX STRING HANDLING 19

42. Strings are created by appending character codes to str_pool. The append_char macro, defined here,
does not check to see if the value of pool_ptr has gotten too high; this test is supposed to be made before
append_char is used. There is also a flush_char macro, which erases the last character appended.
To test if there is room to append ! more characters to str_pool, we shall write str_room(l), which aborts
TEX and gives an apologetic error message if there isn’t enough room.
#define append_char(A) > put ASCII_code # at the end of str_pool <
{ str_pool[pool_ptr] < si(A); incr(pool_ptr);
}
#define flush_char decr(pool_ptr) >forget the last character in the pool«
#define str_room(A) >make sure that the pool hasn't overflowed <
{ if (pool_ptr + A > pool_size) overflow ("poolysize", pool_size — init_pool_ptr);

}

43. Once a sequence of characters has been appended to str_pool, it officially becomes a string when the
function make_string is called. This function returns the identification number of the new string as its value.

static str_number make_string (void) > current string enters the pool«
{ if (str_ptr = maz_strings) overflow ("number of strings", maz_strings — init_str_ptr);
incr (str_ptr); str_start|[str_ptr] < pool_ptr; return str_ptr — 1;

44. To destroy the most recently made string, we say flush_string.

#define flush_string
{ decr(str_ptr); pool_ptr < str_start[str_ptr];

45. The following subroutine compares string s with another string of the same length that appears in
buffer starting at position k; the result is true if and only if the strings are equal. Empirical tests indicate
that str_eq_buf is used in such a way that it tends to return true about 80 percent of the time.

static bool str_eq_buf (str_number s,int k) > test equality of strings<

{ > loop exit <
pool_pointer j; >running index <
bool result; > result of comparison <

j < str_start[s];
while (j < str_start[s + 1]) { if (so(str_pool[j]) # buffer[k]) { result + false; goto not_found;

incr(j); incr(k);
}
result < true;
not_found: return result;

}

20 STRING HANDLING HiTEX ~ §46

46. Here is a similar routine, but it compares two strings in the string pool, and it does not assume that
they have the same length.

static bool str_eq_str(str_number s, str_number t) > test equality of strings<

{ > loop exit <
pool_pointer j, k; > running indices <
bool result; > result of comparison <

result < false;

if (length(s) # length(t)) goto not_found;

j < str_start[s]; k < str_start[t];

while (5 < str_start[s + 1]) { if (str_pool[j] # str_pool[k]) goto not_found;
incr(4); incr(k);

result < true;
not_foun